О.В. Шухто, Д.Б. Березин, С.А. Сырбу

Строение и свойства функциональных производных углеводородов

Учебное пособие

Иваново

Федеральное агентство по образованию Российской Федерации

Государственное образовательное учреждение высшего профессионального образования

Ивановский государственный химико-технологический университет

О.В. Шухто, Д.Б. Березин, С.А. Сырбу

СТРОЕНИЕ И СВОЙСТВА ФУНКЦИОНАЛЬНЫХ ПРОИЗВОДНЫХ УГЛЕВОДОРОДОВ

Учебное пособие

УДК 547.542.95

Шухто О.В., Березин Д.Б., Сырбу С.А.

Строение и свойства функциональных производных углеводородов: учебное пособие / Иван. гос. хим.-технол. ун-т. - Иваново, 2009 - 92 с. ISBN

Учебное пособие содержит основные теоретические положения курса лекций по дисциплине «Органическая химия и основы биохимии, функциональные производные углеводородов», задания для контрольной работы по теме «Функциональные производные углеводородов» и рекомендации по ее выполнению. Предназначено для студентов заочного отделения.

Печатается по решению редакционно-издательского совета Ивановского государственного химико-технологического университета

Рецензенты:

кафедра органической химии Ивановского государственного университета;

кандидат химических наук С.А. Зданович (Институт химии растворов РАН)

Контрольная работа №2

ПОЛУЧЕНИЕ И ХИМИЧЕСКИЕ СВОЙСТВА ФУНКЦИОНАЛЬНЫХ ПРОИЗВОДНЫХ УГЛЕВОДОРОДОВ

Для выполнения контрольной работы студенту предлагается органическое соединение — первичное галогенопроизводное — общей формулы R- CH_2 -X, где X — атом галогена, R — углеводородный заместитель, имеющий ароматическую или алифатическую природу.

ВОПРОСЫ

Из первичного галогенопроизводного R-CH₂-X синтезировать следующие соединения:

1. Спирты: а) R-CH₂OH; б) (R-CH₂)₂CHOH; в) (R-CH₂)₃COH.

Написать реакции спирта а) со следующими веществами:

 ${\rm HBr}^{\sharp}$, ${\rm NH_3}$, ${\rm PCl_5}$, ${\rm H_2SO_4}$ на холоду, ${\rm KMnO_4}$ (водный раствор). Привести механизм отмеченной реакции.

2. Альдегид R-CH₂-COH.

На полученный альдегид подействовать следующими веществами: аммиачным раствором Ag_2O , водородом на катализаторе, реактивом Гриньяра (любой по выбору), $HCN^{\#}$, $NaHSO_3$, написать реакции с аммиаком, анилином. Привести механизм отмеченной $^{\#}$ реакции.

- 3. Альдоль из альдегида R-CH₂-COH.
- 4. Продукт кротоновой конденсации R-CH₂-COH.
- 5. Из альдегида (п. 2) ацеталь R-CH₂-CH(OCH₂R)₂.
- 6. Карбоновую кислоту RCOOH.
- 7. Карбоновую кислоту с числом атомов углерода (n+1), т.е. R-CH₂COOH.

Получить из карбоновой кислоты R-CH₂COOH:

- 1) кальциевую соль кислоты R-CH₂COOH;
- 2) хлорангидрид кислоты R-CH₂COOH;
- $^{\#}$ сложный эфир кислоты (п. 7) и спирта R-CH₂OH;
- 4) ангидрид карбоновой кислоты R-CH₂COOH;
- 5) амид кислоты R-CH₂COOH.
- Из выше полученных функциональных производных карбоновой кислоты получить исходную карбоновую кислоту R- CH_2COOH . Привести механизм отмеченной $^{\#}$ реакции.
- 8. Карбоновую кислоту R- CH_2COOH с использованием ацетоуксусного эфира, а также с использованием малонового эфира.
- 9. Кетон $(R-CH_2)_2CO$ из кальциевой соли $R-CH_2COOH$, а также из самой кислоты $R-CH_2COOH$.
- 10. Кетон R- CH_2COCH_3 (с использованием ацетоуксусного эфира). Из этого кетона получить оксим. Изобразить проекционные формулы анти- и синизомеров этого оксима.
- 11. Галогенопроизводные (R-CH₂)₂CH-X, где X=C1,Bг,J.
- 12. Нитросоединение R-CH₂NO₂.

Написать реакции нитросоединения R-CH₂NO₂ со следующими веществами:

- 1) водородом на катализаторе;
- 2) раствором гидроксида натрия.
- 13. Первичный амин R-CH₂NH₂ без примесей вторичного и третичного аминов. Написать реакции амина R-CH₂NH₂ со следующими веществами:
- 1) соляной или серной кислотой;
- 2) хлорангидридом уксусной кислоты;
- 3) азотистой кислотой.
- 14. Первичный амин с числом атомов углерода (n+1), т.е. $R-CH_2CH_2NH_2$. Из амина $R-CH_2CH_2NH_2$ получить вторичный $RCH_2CH_2-NH-CH_2R$ и третичный $RCH_2CH_2-N-(CH_2R)_2$ амины.
- 15. α -Гидроксикарбоновую кислоту с числом атомов углерода (n+1), т.е. $RCH_2CH(OH)COOH$. Написать реакцию синтеза лактида полученной гидроксикислоты.
- 16. α -Аминокарбоновую кислоту с числом атомов углерода (n+1), т.е. $RCH_2CH(NH_2)COOH$. Изобразить проекционные формулы L- и D-энантиомеров этой кислоты. Получить ацильное производное α -аминокислоты по аминогруппе (ацил остаток кислоты RCOOH) и сложный эфир α -аминокислоты и спирта R-CH₂OH.

ФУНКЦИОНАЛЬНЫЕ ПРОИЗВОДНЫЕ УГЛЕВОДОРОДОВ

ГАЛОГЕНОПРОИЗВОДНЫЕ УГЛЕВОДОРОДОВ

Производные углеводородов, содержащие в своем составе один или несколько атомов галогена, имеющих ковалентную связь C-X, где X = F, Cl, Br, J.

Атомы галогенов (VII группа Периодической системы $^{n}p^5$ элементов) имеют на внешнем электронном уровне (n) $^{7}ns^2$ (l) (l) 4 электронов, 6 из которых образуют три неподеленные 1 электронные пары. За счет седьмого, неспаренного электрона эти элементы могут образовывать ковалентную связь с $^{3}p^3$, $^{2}p^2$ или $^{2}p^2$ или $^{2}p^3$ гибридным атомом углерода в органических соединениях: $^{2}N^{2}$:

Строение функциональной группы

Ковалентная связь углерод-галоген поляризована $C^{\delta +} \to X^{\delta -}$, т.к. электроотрицательность атомов галогенов выше электроотрицательности атома углерода. Полярность связи уменьшается в ряду F>Cl \geq Br>J. Т.о. галогены проявляют относительно углеводородного фрагмента молекулы (R)

отрицательный индукционный (-I) эффект (электроноакцепторное действие). За счет наличия неподеленной электронной пары на несвязывающей орбитали атома галогены могут вступать в сопряжение с π -системой углеводородного заместителя, проявляя +C-эффект:

Поскольку в случае производных бензола |-I|>|+C|, то суммарное действие атома галогена на ароматическую систему является электроноакцепторным, замедляющим реакции электрофильного замещения (S_E2), но ориентирующим заместитель, тем не менее, в орто- и пара-положения бензольного кольца. Поляризуемость связи C-X возрастает в противоположном ряду F<Cl<Br<J, вызывая снижение ее энергии (Есв., кДж/моль: 443 > 328 > 279 > 240), поэтому йодпроизводные вступают в реакцию замещения галогена максимально легко.

Номенклатура и классификация

Галогенопроизводные классифицируют по:

- типу атомов галогенов (фтор-, хлор-, бром- и йод-производные),
- их количеству (моно-, ди-, три- и т.д.) и взаимному расположению,
- по строению углеводородного заместителя (насыщенные, ненасыщенные, линейные, циклические, ароматические и т.д.),
 - насыщенные галогенопроизводные в свою очередь классифицируют как первичные, вторичные и третичные (атом галогена связан с первичным, вторичным или третичным атомом углерода).

Для построения названий галогенопроизводных по номенклатуре ИЮПАК выбирают главную цепь т.о., чтобы она содержала атом углерода, связанный с галогеном. Указывают номером положение атома галогена в главной цепи, причем он определяет начало ее нумерации. Например, 4-метил-2-бром-пентан: CH_3 —CH- CH_2 -CH- CH_3 CH_3

Ароматические галогенопроизводные называют, указывая положение атома галогена в ароматической π -системе, исходя из общих правил номенкла туры:

$$Cl$$
 $CH-CH_3$
йодбензол
 1 -бромнафталин
 α -бромнафталин
 α -хлорэтилбензол
метилфенилхлорметан

Физические свойства

В зависимости от строения углеводородного заместителя могут быть газообразными веществами (метилбромид CH_3Br ($t_{\text{кип.}}$ =3,5°C), хлористый винил CH_2 =CH-Cl ($t_{\text{кип.}}$ =-13,5°C) и т.д.), жидкостями (хлороформ $CHCl_3$ ($t_{\text{кип.}}$ =61,3°C), дихлорэтан Cl- CH_2 -Cl ($t_{\text{кип.}}$ =83,7°C), бромбензол C_6H_5Br ($t_{\text{кип.}}$ =156°C)) и твердыми веществами (йодоформ CHJ_3 ($t_{\text{пл.}}$ =119°C, $t_{\text{кип.}}$ =210°C), ДДТ – 4,4'- дихлордифенилтрихлорэтан, поливинилхлорид –(CHCl- CH_2)_п –). Температура их кипения возрастает по мере увеличения размера атома галогена и их числа.

Нерастворимы в воде, растворимы в органических растворителях, жидкости сами являются растворителями (CH_2Cl_2 , $CHCl_3$, CCl_4), токсичны, обладают сильным запахом, неогнеопасны (с увеличением числа атомов галогенов в молекуле снижается горючесть вещества).

Методы получения

1. Замещение атома водорода в алканах по цепному радикальному механизму, а также галогенирование алкилбензолов на свету с замещением атома водорода при α-углеродном атоме:

$$R-H+X_2$$
 hv $R-X+HX$, где $X-$ атом галогена (Br, Cl)

2. Галогенирование ароматических углеводородов в присутствии катализатора с образованием ароматических галогенопроизводных:

$$+ Cl_2$$
 $\xrightarrow{AlCl_3}$ $+ HCl$

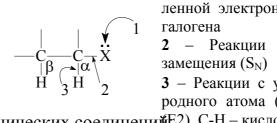
3. Присоединение по кратным связям алкенов или алкинов молекул X_2 или HX. Таким способом могут быть получены не только моно-, но и ди- или тетрагалогенопроизводные:

4. Замещение на галоген групп –NH₂, -OH и др. (в основном у несопряженных галогеногпроизводных):

$$CH_3$$
- $CH_2OH + HBr \rightarrow CH_3$ - $CH_2Br + H_2O$
 CH_3 - $CH_2OH + PCl_5 \rightarrow CH_3$ - $CH_2Cl + POCl_3$

Реакция протекает по механизму нуклеофильного замещения, который будет рассмотрен позднее.

5. Взаимодействие альдегидов и кетонов с PCl₅ или PBr₅:


$$CH_{3} \xrightarrow{C} C-CH_{3} + PCl_{5} \rightarrow POCl_{3} + CH_{3} \xrightarrow{Br} C-CH_{3}$$
O
Alleton

Химические свойства

X = Cl, Br, J

Реакционные центры - это те атомы и химические связи в молекуле, взаимодействие которых с теми или иными реагентами наиболее вероятно.

Реакционные центры в молекулах несопряженных галогенопроизводных:

- 1 Реакции с участием неподеленной электронной пары атома
- 2 Реакции нуклеофильного замещения (S_N)
- **3** Реакции с участием α-углеродного атома (отщепление HX
- 1. Образование металлорганических соединений Е2), С-Н кислотные свойства)

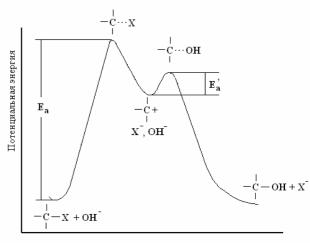
2. Реакции замещения атома галогена на другие функциональные группы. $CH_3\text{-}CH_2Cl + KOH_{\text{разб. водн.}} \to CH_3\text{-}CH_2OH + HCl$

Реакция протекает по механизму нуклеофильного замещения (S_N) .

Hуклеофил (Nu) — ненасыщенная частица или молекула, имеющая электроноизбыточные атомы, π -электроны, или несущая отрицательный заряд, способная взаимодействовать с частично положительно заряженным атомом углерода.

В результате таких процессов уходящая группа (нуклеофуг – «подвижный в виде нуклеофила») X в органическом субстрате RX, содержащем связь C_{sp} 3-X, замещается нуклеофильным реагентом :Nu таким образом, что неподеленная пара нуклеофила в продукте реакции RNu становится электронной парой σ -связи C-Nu, а электронная пара σ -связи C-X становится неподеленной парой уходящей группы:

$$Nu: + - C - X \longrightarrow Nu - C - + X:$$


Различают мономолекулярное $(S_N 1)$ и бимолекулярное $(S_N 2)$ нуклеофильное замещение.

Механизм $S_N 1$ — мономолекулярное нуклеофильное замещение (классический ионизационный механизм Ингольда — Хьюза), протекает, как правило, в растворе:

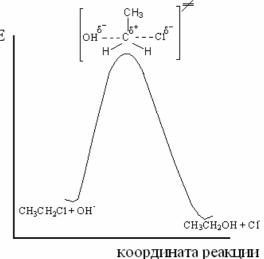
$$H_3C$$
— C — C 1 — C 1 — C 1 — C 2 — C 3 — C 3 — C 4 — C 3 — C 4 — C 5 — C 4 — C 5 — C 5 — C 6 — C 6 — C 7 — C 8 — C 9 — C 9 — C 1 — C 9 — C 1 — C 1 — C 1 — C 3 — C 3 — C 4 — C 4 — C 5 — C 4 — C 6 — C 8 — C 8 — C 9 — C 9 — C 1 — C 1 — C 1 — C 1 — C 3 — C 1 — C 3 — C 3 — C 4 — C 4 — C 5 — C 4 — C 6 — C 8 — C 9 — C 9 — C 9 — C 1 — C 2 — C 3 — C 3 — C 4 — C

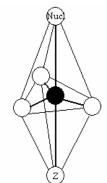
На первой стадии происходит гетеролитическая диссоциация исходного соединения с образованием карбокатиона и аниона X^- . На второй стадии карбокатион быстро взаимодействует с имеющимся в растворе нуклеофилом (либо самим растворителем).

Стадия образования карбокатиона является лимитирующей. По этой причине

координата реакции

скорость $S_N 1$ — реакции зависит только от концентрации алкилгалогенида (кинетическое уравнение первого порядка):


$$v = -\frac{dC_{RCl}}{d\tau} = k_{v}[RCl]$$


Механизм $S_N 2$ — бимолекулярное нуклеофильное замещение:

Поскольку образование связи с нуклеофилом и разрыв связи с уходящей группой происходит одновременно, эту реакцию называют *согласованным*, или *бимолекулярным* процессом.

Нуклеофил участвует в образовании E переходного состояния, поэтому скорость S_N2 — реакции зависит от концентрации как субстрата RX, так и нуклеофила :Nu (кинетическое уравнение второго порядка):

$$v = -\frac{dC_{RCl}}{d\tau} = k_v[OH^-][RCl]$$

В переходном состоянии согласованной $S_N 2$ -реакции число связей вступающего в реакцию атома углерода увеличивается до 5, а само переходное состояние представляет собой тригональную бипирамиду.

Тип механизма, по которому будет проходить реакция (S_N) , зависит от нескольких факторов.

<u>а)</u> Строение углеводородного фрагмента молекулы, связанного с атомом галогена

Третичные галогеналканы (R_3 C-X) реагируют по механизму $S_N I$, т.к. в ходе реакции образуется стабильный третичный карбокатион, а возможности образования переходного состояния по механизму $S_N 2$ препятствуют пространственные помехи из-за наличия трех объемистых алкильных заместителей. По механизму $S_N 1$ реагируют также производные углеводородов, которые могут образовывать стабильные карбокатионы, например, аллильного или бензильного типа. Скорость реакции $S_N 1$ возрастает в ряду соединений:

$$CH_3X < RCH_2X < R\text{-}CH(X)\text{-}R' < (R)_3C\text{-}X < R\text{-}CH\text{-}CH\text{-}CH_2X < C_6H_5\text{-}CH_2\text{-}X,$$
 первичные вторичный третичный аллильного типа бензильного типа где X — атом галогена.

Так, например, для реакции R-Br $\frac{H_2O}{-HBr}$ \rightarrow R-OH относительная скорость изменяется следующим образом:

$$CH_3Br(1) < CH_3CH_2Br(1,7) < (CH_3)_2CH-Br(45) < (CH_3)_3C-Br(10^8)$$

По механизму $S_N 2$ хорошо реагируют первичные галогеналканы, в которых минимальны пространственные затруднения для образования переходного состояния, тогда как реакции третичных производных, напротив, сильно затруднены.

Принципиально важной характеристикой $S_N 2$ -реакции является ее *стереоспецифичность*. Атака нуклеофила на атом углерода наблюдается со

стороны, противоположной связи с уходящей группой X. Стереохимическим следствием такого процесса должно быть так называемое *вальденовское обращение* конфигурации при хиральном атоме углерода, связанном с уходящей группой (см. Оптическая изомерия).

Классическим примером вальденовского обращения служит реакция изотопного замещения йода в (+)-2-йодоктане под действием радиоактивного йодид-иона (Ингольд, Хьюз, 1935):

131
Ј $^{-}$ + $^{-}$ Н $^{-}$ С— Ј $^{-}$ Ацетон $^{-}$ 131 Ј— С— СН $_3$ + Ј $^{-}$ С $_6$ Н $_{13}$ (+)-2-йодоктан (—)-2-йодоктан

Процессы, протекающие по механизму S_N1 , такой особенности не имеют. Если галогенопроизводное, вступающее в S_N1 — реакцию, обладает оптической активностью, то продукт реакции будет представлять собой рацемическую смесь оптических изомеров, а оптическая активность исчезнет.

б) Природа уходящей группы (нуклеофуга)

Независимо от механизма реакции уходящая группа уносит пару электронов:

$$R-X + Nu$$
: $\rightarrow R-Nu + X$:

Связь этой группы с атомом углерода разрывается тем легче, чем стабильнее уходящий анион. В ряду $F^- - Cl^- - Br^- - J^-$ стабильность аниона увеличивается. Наиболее легко отщепляемыми уходящими группами являются обычно анионы сильных кислот.

в) Характер нуклеофильного реагента

Чем сильнее атом (или группа атомов) удерживает пару электронов, тем меньше вероятность того, что он сможет действовать в качестве нуклеофила. Термин «нуклеофильность», т.е. количественная мера силы нуклеофила в данной химической реакции, не имеет строгого определения. Для $S_N 2$ реакций

можно выделить несколько основных факторов, определяющих нуклеофильность реагента, таких как: поляризуемость, основность, электроотрицательность атакующего атома, энергия сольватации, способность связываться с орбиталями атакуемого атома углерода, а также эффективный объем нуклеофила.

Например, нуклеофильность по отношению к ${\rm CH_3J}$ в метаноле снижается в ряду:

$$C_6H_5S^- > HOO^- > J^- > CN^- > NH_2OH > OH^- > CH_3O^- > Br^- = C_6H_5O^- > NH_3^- > (CH_3)_2S > Cl^- > CH_3COO^- > F^- > NO_3^- > CH_3OH$$

г) Природа растворителя

В растворе исходные реагенты и переходное состояние стабилизируются в различной степени в зависимости от сольватирующей способности растворителя. Различная сольватация исходного и переходного состояния в разных растворителях может приводить либо к ускорению, либо к замедлению реакции.

Для реакций, где в переходном состоянии возникают заряженные частицы $(S_N 1)$ или уже имеющийся заряд локализуется в меньшем объеме, следует ожидать ускорения реакции в более полярной среде с более высоким значением диэлектрической проницаемости. Реакции по механизму $S_N 2$ протекают у галогеналканов преимущественно в диполярных апротонных растворителях (ДМСО, ДМФА, сульфолан).

Примеры реакций галогенопроизводных, протекающих по механизму нуклеофильного замещения:

1) R-CH₂-X + NH₃
$$\rightarrow$$
 [R-CH₂-NH₃]⁺X⁻ $\stackrel{\frown}{}$ R-CH₂-NH₂ + HX образование аминов

2) R-CH₂-X + KOR'
$$\rightarrow$$
 R-CH₂-O-R' + KX образование простых эфиров

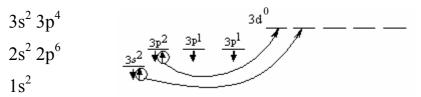
3) R-CH₂-X + KCN
$$\rightarrow$$
 R-CH₂-CN + KX образование нитрилов карбоновых кислот

4) R-CH₂-X + NaOOCR'
$$\to$$
 R'-С O-CH₂-R образование сложных эфиров

5) R-CH₂-X + KSH \rightarrow R-CH₂-SH + KX образование тиоспиртов (тиолов)

Замещение атома галогена у ароматических галогенопроизводных протекает значительно труднее и всегда только по S_N2 механизму, т.к. фенильный карбокатион предельно неустойчив.

3. Реакции отщепления.


$$CH_3$$
- CH_2 - $Br \xrightarrow{CH_2} CH_2$ = CH_2 + HBr

Реакция протекает по механизмам элиминирования (E1 или E2) в соответствии с *правилом Зайцева* (отщепление атома водорода от наименее гидрированного атома углерода).

СЕРУСОДЕРЖАЩИЕ ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ

Содержат связь С-Ѕ в составе различных функциональных групп.

Атом серы ${}_{16}^{32}$ S имеет электронное строение:

На его внешнем электронном уровне 6 электронов: s-электронная пара, p-электронная пара и два неспаренных p-электрона. При образовании химических связей по одному электрону с 3p и 3s уровней могут последовательно переходить на 3d-орбитали, тем самым обеспечивая валентности атома серы 2, 4 и 6.

Номенклатура и классификация

В органических соединениях атом серы может находиться в разных степенях окисления.


1. Сульфоновые кислоты (сульфокислоты), производные сульфоновых кислот (галогенангидриды RSO₂X, сложные эфиры R-SO₂-O-R', соли R-SO₃Na,

амиды R-SO₂NH₂ и др.) и сульфоны:

$$R - S - OH$$
 $R - S - X$ $R - S - R'$

Сера в этих соединениях находится в степени окисления +6 (органические аналоги серной кислоты).

Например:

2. Сульфиновые кислоты, производные сульфиновых кислот и сульфоксиды, как органические аналоги сернистой кислоты. Сера в этих соединениях находится в степени окисления +4:

Например:

$$_{\text{CH}_{3}}\overset{\text{O}}{\overset{\text{I}}{\ldots}}$$
 он метан**сульфиновая** кислота $\overset{\text{O}}{\overset{\text{I}}{\ldots}}\overset{\text{O}}{\overset{\text{I}}{\ldots}}$ диметил**сульфокси**д

3. Сульфеновые кислоты и их производные (S^{2+}) :

$$R = \stackrel{\cdots}{\text{S}} = OH$$
 $R = \stackrel{\cdots}{\text{S}} = X$

Нестабильны, изучены мало.

$$CH_3CH = CH-S-OH$$

пропен-1-сульфеновая кислота (определяет слезоточивое действие лука)

4. Тиолы (меркаптаны), или органические аналоги сернистой кислоты (S^{2-}):

5. Органические сульфиды, дисульфиды, полисульфиды

$$R = \stackrel{\cdot}{S} = R'$$
 $R = \stackrel{\cdot}{S} = \stackrel{\cdot}{S} = R'$

По номенклатуре ИЮПАК сульфиды называются алкилтиоалканами (принцип построения названий аналогичен названиям простых эфиров):

$$CH_3$$
— CH — S — CH_2 — CH_2 — CH_2 — CH_3

В соответствии с общей номенклатурой перед словом «сульфид» дается название двух алкильных групп (изопропилбутилсульфид).

Серусодержащие органические соединения получаются в окислительновосстановительных процессах; однако, именно реакции окисления распространены более широко:

Строение функциональных групп и физико-химические свойства

<u>Сульфоны</u> — соединения с двумя полярными двойными связями $S^{\delta^+} = O^{\delta^-}$, дипольный момент этой связи около 3D.

 SO_2 является сильным электроноакцептором, проявляет –I и, если атом S может взаимодействовать с системой сопряжения, –C эффекты.

Сульфонат-ион (R-SO₂-O⁻) имеет тетраэдрическое строение, углы между связями $108-110^{\circ}$.

R Молекулы <u>сульфиновых кислот</u> и их производных имеют пирамидальное строение. Дипольные моменты сульфоксидов $R_2S=O$ довольно велики X (3,8 - 4,0 D), поэтому связь S=O в них часто считают ионизированной S^+-O^- . Низшие члены этого ряда являются хорошими растворителями как органических, так и неорганических соединений (сверхрастворители – диметилсульфоксид, сульфолан).

Методы получения

1. Сульфоновые кислоты

- а) Сульфоокисление алканов R-H $\xrightarrow{SO_2;O_2;h\nu}$ R-SO₃H
- б) Сульфирование аренов концентрированной серной кислотой или олеумом ($H_2SO_4 + SO_3$) при нагревании

$$2 \begin{array}{c} CH_3 \\ + 2H_2SO_4 \end{array} \rightarrow \begin{array}{c} CH_3 \\ + CH_3 \\ + CH_3 \\ + CH_3 \\ + CH_2O \end{array}$$

(о-толуолсульфок-та)

(*п*-толуолсульфок-та)

в) Получение сульфонилхлоридов (сульфохлорирование):

алканов: R-H
$$\xrightarrow{SO_2;Cl_2;h\nu}$$
 R-SO₂C1

$$SO_2Cl$$
 аренов: $+2ClSO_3H \rightarrow +HCl + H_2SO_4$ избыток хлорсульфоновой кислоты

Из сульфонилхлоридов получают:

сульфоновые кислоты:
$$R-SO_2Cl + H_2O \rightarrow R-SO_2OH + HCl$$
 сульфонамиды: $R-SO_2Cl + 2NH_3 \rightarrow R-SO_2NH_2 + NH_4Cl$

2. Арилсульфоны получают по реакции сульфонилирования:

Алкилсульфоны могут быть получены при окислении алкилсульфидов сильным окислителем (см. выше).

3. Сульфоксиды

получают окислением сульфидов разбавленной азотной кислотой:

$$R-S-R' \xrightarrow{[O]} {\begin{array}{c} R-S-R' \\ \parallel \\ O \end{array}}$$

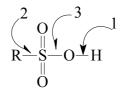
4. Тиолы

а) алкилирование солей сероводорода галогеналканами:

$$R$$
-Br + NaSH \rightarrow R-SH + NaBr (этанол, 20 $^{\circ}$ C)

б) Современный метод синтеза тиолов заключается во взаимодействии алкилгалогенидов или алкилсульфонатов с тиомочевинной:

18


$$C_6H_{13}Br + NH_2-C-NH_2 \xrightarrow{\text{этанол, 78}^{\circ}C} C_6H_{13}SH + NH_2-C-NH_2 + NaBr$$

в) при алкилировании тиолятов или неорганических сульфидов получают органические сульфиды:

$$R-Br + R'-SNa \rightarrow R-S-R' + NaBr$$

 $2 R-Br + Na-S-Na \rightarrow R-S-R + 2NaBr$

Химические свойства

1. Сульфоновые кислоты

Реакционные центры:

1. Являются сильными кислотами, в водных растворах ионизированы:

$$R-SO_3H + H_2O \rightleftharpoons R-SO_3 + H_3O^+$$

Образуют соли:

$$R-SO_3H + NaCl \rightleftharpoons RSO_3Na\downarrow + HCl$$

- высаливание сульфоновых кислот как способ их выделения из водного раствора

Синтетические моющие средства содержат смесь солей различных сульфоновых кислот с числом углеродных атомов C_{10} - C_{20} .

2. Электрофильное (а) или нуклеофильное (б) замещение сульфогруппы:

a) Ar-SO₃H + H₂O
$$\xrightarrow{120-150^{\circ}C}$$
 Ar-H + H₂SO₄

б) Ar-SO₃H + 2 NaOH
$$\xrightarrow{\text{ицелочное}_\text{плавление}}$$
 Ar-OH + Na₂SO₃ + H₂O

2. Производные сульфоновых кислот

а. Сульфонилхлориды (галогенангидриды сульфоновых кислот)

Связь S^{δ^+} - Cl^{δ^-} сильно полярна, поэтому сульфонилхлориды реакционноспособны и легко взаимодействуют с нуклеофилами. Из сульфонилхлоридов синтезируют другие производные сульфоновых кислот – эфиры, амиды, гидразиды и т.д.

$$R-SO_2-Cl + HNu: + B: \rightarrow R-SO_2-Nu + HB^+Cl^-$$
, где $B: -$ основание

б. Сульфонамиды

Слабые NH-кислоты, анион сульфонамида — нуклеофил, легко алкилируется и галогенируется:

3. Сульфоны — инертные и термически стабильные соединения, являются слабыми СН-кислотами:

4. Сульфиновые кислоты

Более слабые кислоты, чем сульфоновые.

В водных растворах образуют соли:

$$R-SO_2H + H_2O \rightleftharpoons RSO_2^- + H_3O^+$$

Легко окисляются до сульфоновых кислот.

5. Сульфоксиды

Реакционные центры: R—S—CH—R'

Проявляют свойства слабых оснований и очень слабых СН-кислот:

6. Тиолы

Реакционные центры: $R = \ddot{\ddot{S}} + \ddot{\ddot{H}}^2$

Характерны 2 основные группы реакций: а) с разрывом связи S-H и б)

нуклеофильные реакции с участием атома серы.

а) Кислотные свойства

$$R-S-H+:B \longrightarrow R-S^-+HB^+,$$
 где : $B-$ основание

Тиолы проявляют более выраженные кислотные свойства, чем спирты R-OH.

Окисление:

б) Тиолят-ион легко алкилируется (реакция Вильямсона):

$$R-S^{-}Na^{+} + CH_{3}Cl \rightarrow R-S-CH_{3} + NaCl$$

7. Сульфиды

У сульфидов остается единственный активный реакционный центр — неподеленная пара электронов атома S: R = S - R'

Являются очень слабыми основаниями:

$$CH_3$$
 $\ddot{S} + H^+X$ \rightleftarrows CH_3 $\ddot{S} - H$ X $pK_{BH^+} = -5,25$

При алкилировании образуют соли сульфония:

$$\begin{array}{c}
\text{CH}_{3} \\
\text{CH}_{3} \\
\text{CH}_{3}
\end{array} \ddot{\text{S}} + \text{R-Cl} \longrightarrow \begin{bmatrix}
\text{CH}_{3} \\
\text{CH}_{3}
\end{array} \ddot{\text{S}} - \text{R}$$

Легко окисляются с образованием сульфоксидов и сульфонов.

21

$$R-S-R' \xrightarrow{HNO_3} pas6. \qquad 0 \qquad |O| \qquad |O| \qquad R-S-R' \qquad |CO| \qquad R-S-R' \qquad |CO| \qquad |CO|$$

КИСЛОРОДСОДЕРЖАЩИЕ ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ

Кислород — элемент VI группы 2-го периода Периодической системы элементов; порядковый номер 8; атомная масса 16; электроотрицательность 3,5.

Электронная конфигурация в основном состоянии $1s^22s^22p^4$.

На 2 энергетическом уровне в атоме кислорода находятся 2 неспаренных электрона, за счет которых он может образовывать ковалентные связи с другими атомами, и 2 неподеленные электронные пары, которые могут участвовать в образовании донорно-акцепторных связей или вступать в $n-\pi^*$ -сопряжение с углеводородным фрагментом молекулы.

ГИДРОКСИЛПРОИЗВОДНЫЕ УГЛЕВОДОРОДОВ

- содержат в своем составе ковалентно-связанную группу -ОН.

Номенклатура и классификация

- 1. По строению заместителей, связанных с атомом кислорода различают:
- предельные спирты

СН₃-ОН метиловый спирт, метанол

СН₃-СН₂-ОН этиловый спирт, этанол

СН₃-СН₂-СН₂-ОН пропиловый спирт, пропанол-1

СН₃-СН(ОН)-СН₃ изопропиловый спирт, пропанол-2

- непредельные спирты

СН₂=СН-ОН виниловый спирт (неустойчив)

СН₂=СН-СН₂-ОН аллиловый спирт

- арилсодержащие неароматические спирты

С₆Н₅СН₂-ОН бензиловый спирт

 C_6H_5 -CH(OH)- C_6H_5 гидроксидифенилметан

 C_6H_5 -CH(OH)-CH₃ α -гидроксиэтилбензол

- фенолы (ароматические спирты)

Фенолы – гидроксисоединения, в молекулах которых ОН-группы связаны непосредственно с бензольным ядром: OH

- 2. По числу гидроксильных групп различают:
- одноатомные спирты и фенолы (все вышеперечисленные соединения)
- многоатомные спирты и фенолы:

HO-CH₂-CH₂-OH этиленгликоль, 1,2-этандиол

НО-СН₂-СН(ОН)-СН₂-ОН глицерин, 1,2,3-пропантриол

Двухатомные спирты с двумя ОН-группами при одном и том же атоме углерода R- $CH(OH)_2$ неустойчивы и, отщепляя воду, превращаются в альдегиды или кетоны. Спирты R- $C(OH)_3$ не существуют.

- **3.** В зависимости от того, с каким атомом углерода (первичным, вторичным или третичным) связана гидроксигруппа, различают спирты
- первичные R-CH₂-OH
- вторичные R₂CH-OH
- третичные R_3C -OH

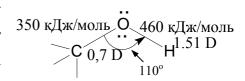
По номенклатуре ИЮПАК спирты называют, добавляя суффикс —ол к названию соответствующего углеводорода и указывая цифрой положение гидроксигруппы, или обозначая группу —ОН как «гидрокси»:

$$CH_3$$
 CH_3 CH_3 CH_2OH CH_3 — CH_2CH_3 CH_3 — CH_2CH_3 CH_3 $CH_$

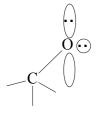
Спирты R-OH также называют по алкильному фрагменту:

$$HO-CH_2-CH_2CH_3$$
 CH_3-CHCH_2-OH $CH_3-CH-CH_2CH_3$ $CH_3-CH-CH_3$ CH_3-CH-C

н-бутиловый спирт *изо*-бутиловый спирт *втор*-бутиловый спирт *трет*-бутиловый спирт *нет*-бутиловый спирт


По устаревшей карбинольной номенклатуре спирты называют как производные первого члена гомологического ряда – карбинола CH₃OH:

OH
$$CH-CH_3$$
 CH CH_3 CH_3 дифенилкарбинол


Строение функциональной группы

О–Н и С–О - ковалентные полярные связи. Электронная плотность на обеих связях смещена к более электроотрицательному атому кислорода:

Дипольный момент связи С-О составляет 0,70D, а связи О-H -1,51D. Разрыв таких связей происходит преимущественно гетеролитически (по ионному

механизму). Энергии связей С-О и О-Н в спиртах равны соответственно 350 и 460 кДж/моль, угол С-О-Н составляет порядка $110^{\rm o}$ в зависимости от структуры углеводородного заместителя.

Из двух неподеленных электронных пар одна находится на s- орбитали, другая — на p_z -орбитали. s-Электронная пара может образовывать связи с частицами, имеющими вакантные орбитали, поэтому спирты при взаимодействии, например, с кислотами,

легко протонируются.

В результате большей электроотрицательности атома кислорода гидроксигруппа проявляет отрицательный индукционный эффект (-І-эффект) по отношению к углеводородному заместителю и в спиртах выступает как

электроноакцептор. Спирты имеют большое сходство с водой, но алкильный заместитель увеличивает ковалентность связи OH: R → O-H.

В молекуле фенола –ОН группа непосредственно связана с бензольным кольцом:

Аналогично молекулам спиртов, -ОН группа в фенолах проявляет — Іэффект, являясь σ -электроноакцептором. Однако электронная пара,
находящаяся на p_z -орбитали, может вступать в сопряжение с π -электронной
системой бензола, отдавая электронную плотность в ядро и проявляя тем
самым значительный +С эффект. Поскольку |-I| << |+C|, то -OH группа в
фенолах является сильным электронодонором (орто- и пара-ориентант в
реакциях электрофильного замещения).

Физические свойства

Одноатомные спирты, содержащие до 16 атомов углерода – жидкости, более 16 – твердые вещества.

Спирты являются высокоассоциированными жидкостями.

Способность гидроксисоединений к образованию сетки водородных связей является следствием полярности связи О–Н и наличия неподеленных пар электронов на атоме кислорода:

Энергия простой водородной связи в спиртах 25-26 кДж/моль. Ассоциаты могут быть линейными либо циклическими.

$$n R-OH \longrightarrow (ROH)_n$$
, где $n-$ степень ассоциации, $n=2\div 30$ и более

Ассоциация проявляется в высоких температурах кипения спиртов по сравнению с температурами кипения соответствующих углеводородов.

Например,
$$C_3H_8$$
 – пропан, **M=44**, $t_{\text{кип}}$ =-42°C

 C_2H_5OH – этанол, **M=46**, $t_{\text{кип.}}$ =78°C

Чем менее разветвленным является заместитель, тем больше способность спирта образовывать ассоциаты и выше его температура кипения:

первичный спирт > вторичный спирт > третичный спирт

уменьшение температур кипения

Так, температуры кипения изменяются в ряду: μ -бутанол (117,9°C) > ϵ втор-бутанол (100°C) > ϵ трем-бутанол (83°C)

Многоатомные спирты еще более ассоциированы, поэтому при переходе от одноатомных к многоатомным спиртам температуры кипения и плавления резко возрастают (пропанол (97°C) < пропиленгликоль $^{\text{CH}_2\text{CHCH}_3}_{\text{OH OH}}$ (189°C) < глицерин (290°C)).

Молекулы низших спиртов отличаются высокой полярностью ($\mu \approx 1,7$). Дипольный момент фенолов несколько ниже ($\mu \approx 1,53$ у C_6H_5OH).

Низшие члены ряда спиртов хорошо растворимы в воде за счет образования водородных связей с молекулами воды: H = R = H = 0: H = 0: H = 0:

Способность растворяться в воде уменьшается при переходе от многоатомных гидроксисоединений к одноатомным, а также с увеличением длины алкильной цепочки. Метанол, этанол, пропанол, изопропанол, этиленгликоль и глицерин смешиваются с водой в любых соотношениях. *Н*-бутанол растворим в воде при 25°C всего на 8%. Одноатомные спирты являются хорошими растворителями. Фенол — твердое белое кристаллическое вещество с ограниченной растворимостью в воде. Многоатомные фенолы хорошо растворимы в воде (размер полярной части молекулы увеличивается).

Методы получения

Получение одноатомных спиртов:

1. Спиртовое брожение глюкозы с образованием этилового спирта:

$$C_6H_{12}O_6 \xrightarrow{\text{фермент}} 2 C_2H_5OH + 2CO_2$$

2. Гидролиз галогеналканов:

$$C_2H_5Cl + H_2O/NaOH \rightarrow C_2H_5OH + NaCl$$

3. Гидратация алкенов:

$$CH_2$$
= CH - CH_3 + H_2O $\xrightarrow{H_2SO_4}$ CH_3 - CH - CH_3 OH

Этот способ применяют в промышленности для получения этанола и изопропанола. В случае других спиртов его применение в органическом синтезе нецелесообразно из-за большого числа побочных продуктов.

4. Оксимеркурирование – демеркурирование алкенов:

$$CH_{3}CH_{2}CH_{2}CH=CH_{2} \xrightarrow{1) (CH_{3}COO)_{2}Hg; T\Gamma\Phi-H_{2}O} CH_{3}CH_{2}CH_{2}CH=CH_{2} \xrightarrow{2) NaBH_{4}; H_{2}O} CH_{3}CH_{2}CH_{2}CH_{2}CH-CH_{3}$$

Направление протекания реакции соответствует правилу Марковникова, образуются вторичные или третичные спирты.

5. Гидроборирование алкенов с последующим окислением боранов:

$$CH_2 = C - CH_2CH_3 \xrightarrow{2) H_2O_2; NaOH} CH_2 - CH_2CH_3$$

$$CH_3 OH CH_3$$

Таким способом получают первичные спирты против правила Марковникова.

6. Синтезы с использованием реактивов Гриньяра:

Из альдегидов получают вторичные спирты, из кетонов — третичные, использование формальдегида $CH_2C=O$ позволяет получить первичный спирт.

7. Восстановление соединений с C=O связью гидридами металлов (LiAlH₄, NaBH₄):

Получение многоатомных спиртов:

1. Окисление алкенов

$$CH_{2}=CH_{2} \xrightarrow{KMnO_{4}} CH_{2}-CH_{2}$$

$$O_{2}, Ag$$

$$O_{2}, Ag$$

$$CH_{2}-CH_{2}$$

$$O_{3}, Ag$$

$$CH_{2}-CH_{2}$$

$$O$$

$$O$$

$$O$$

$$O$$

2. Гидролиз жиров

3. Пинаконовое восстановление

2
$$R-C-R + Mg$$
O
$$R - C-R + Mg$$
O
$$R - C-C R$$
OH OH

ПИНАКОН

Получение фенолов:

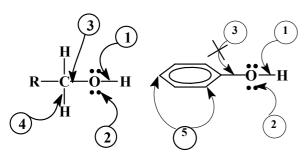
1. Щелочное плавление солей ароматических сульфокислот

SO₃Na ONa ONa
$$\frac{2 \text{ NaOHtb.}}{t}$$
 + Na₂SO₃ + H₂O

2. Гидролиз галогенопроизводных аренов (NaOH, t, p)

$$\begin{array}{c|c}
Cl & ONa \\
\hline
& 2 \text{ NaOHp-p} \\
\hline
& t, \text{ CuSO}_4 \\
& \text{H}_2\text{O}
\end{array}$$

3. Гидролиз солей диазония


4. Кумольный способ

$$CH$$
 CH_3 C

Применяется только для получения незамещенного фенола.

Химические свойства спиртов

В молекулах спиртов и фенолов имеется 4 реакционных центра, по которым протекают:

паре (взаимодействие комплексообразование)

реакции с разрывом связи О-Н
 (взаимодействие с основаниями,
 образование сложных эфиров карбоновых кислот, ацилирование и алкилирование)
 реакции по неподеленной электронной

процессы

ассоциации,

3 — реакции по связи C-OH (замещение OH группы на нуклеофил, межмолекулярная и внутримолекулярная дегидратация). Для фенолов такие реакции малохарактерны вследствие действия сильного +C-эффекта сопряжения —OH группы с бензольным кольцом.

кислотами,

c

 4 – реакции замещения водорода при α-углеродном атоме, реакции окисления, дегидрирования (у фенолов отсутствуют) 5 – реакции с участием бензольного кольца (электрофильное замещение)

- І. Реакции с разрывом связи О-Н
- 1. Ионизация спиртов.

$$ROH + OH^- \longrightarrow RO^- + H_2O$$

алкоголят- ион (алкоксид-ион) (слабее H_2O^*)

Спирты как слабые О-Н кислоты реагируют с щелочными, щелочноземельными металлами, алюминием, галлием и таллием с образованием алкоголятов:

$$CH_3OH + Na \rightarrow CH_3ONa + \frac{1}{2}H_2$$

метилат Na

Алкоголяты RO - очень сильные основания, легко гидролизуются с образованием спиртов.

Кислотность спиртов (pK_a) в водном растворе уменьшается в ряду:

 H_2O (15,7) \geq C H_3OH (15,5) > первичный (C_2H_5OH , 15,9) > вторичный ((C H_3) $_2$ CH-OH, 16,9) > третичный ((C H_3) $_3$ C-OH, 19,2).

В газовой фазе наблюдается противоположная последовательность. Введение электроноакцепторных заместителей в молекулу спирта усиливает кислотные свойства:

$$CH_3CH_2OH$$
 $pK_a = 15.9$ CF_3CH_2OH $pK_a = 12.4$

2. Образование простых эфиров:

$$2 \text{ CH}_3\text{OH} \xrightarrow{\text{H}_2\text{SO}_4} \text{H}_2\text{O} + \text{CH}_3\text{-O-CH}_3$$
 диметиловый эфир $\text{C}_2\text{H}_5\text{OH} + \text{CH}_3\text{Br} \xrightarrow{\text{OH}^-} \text{C}_2\text{H}_5\text{-O-CH}_3$

3. Образование сложных эфиров (реакция этерификации):

$$R-C = \frac{O}{OH + HO-R'} = \frac{H_2SO_4}{R-C} R-C = \frac{O}{OR'} + H_2O$$

.

кроме метанола

- II. Реакции по неподеленной электронной паре атома кислорода.
- 1. Протонирование спиртов сильными кислотами (HCl, H₂SO₄ и др.)

$$R-OH + H^{+}X^{-} \longrightarrow [R-OH_{2}^{+}]X^{-}$$

алкилгидроксоний - ион

С галогенидами и оксигалогенидами фосфора, серы, выступающими в качестве кислот Льюиса, спирты образуют донорно-акцепторные комплексы, которые в некоторых условиях могут подвергаться дальнейшим превращениям.

3. Реакции комплексообразования, в которых молекулы спирта могут выступать в качестве простых лигандов, например [Cu(OAc)₂(C₂H₅OH)_{n-2}], [Zn(C₂H₅OH)₆]²⁺(NO₃ $^{-1}$)₂

III. Реакции с разрывом связи C-OH

1. Нуклеофильное замещение ОН-группы на галоген Первичные спирты реагируют по механизму $S_N 2$:

Третичные спирты реагируют по механизму S_N1 :

Сама по себе –ОН группа является «плохой уходящей группой», т.к. легче отщепляются группы – анионы сильных кислот. Группе –ОН соответствует молекула H_2O (слабая кислота), тогда как протонированной группе – OH_2^+ (хорошая уходящая группа) соответствует ион гидроксония H_3O^+

(сильная кислота). Поэтому протонирование молекулы спирта приводит к увеличению скорости как $S_N 1$, так и $S_N 2$ реакций.

Реакционная способность галогенводородов уменьшается в ряду:

Для получения алкилхлоридов используют хлорид цинка в соляной кислоте:

$$RCH_{2}OH + ZnCl_{2} \xrightarrow{\qquad} R-CH_{2}-O \xrightarrow{\oplus} H \xrightarrow{+ C\Gamma} RCH_{2}Cl + Zn(OH)Cl_{2}$$

Более эффективно замещение ОН группы на галоген протекает при действии галогенидов фосфора:

$$3 \text{ ROH} + \text{PBr}_3 \rightarrow 3 \text{ R-Br} + \text{H}_3\text{PO}_3$$

2. Взаимодействие с кислородсодержащими неорганическими кислотами

$$CH_{3}CH_{2}OH + H_{2}SO_{4} \quad \overline{\overline{}_{\text{XOJOJ}}} \quad [CH_{3}CH_{2}OH_{2}^{+}] \ HSO_{4} \quad \overline{\overline{}_{H_{2}O}} \quad CH_{3}CH_{2}OSO_{3}H$$

этилсерная кислота (этилсульфат)

3. Дегидратация спиртов

$$CH_3CH_2OH \xrightarrow{H_2SO_4} CH_2=CH_2+H_2O$$

Реакционная способность спиртов уменьшается в ряду:

третичный спирт > вторичный спирт > первичный спирт

Дегидратацию третичных спиртов можно проводить уже в 20-50% серной кислоте при 85-100°C, первичные спирты подвергаются дегидратации в значительно более жестких условиях (96% H_2SO_4 при 170-190°C).

Дегидратация спиртов протекает также в присутствии такого водоотнимающего средства, как Al_2O_3 :

$$CH_3CH_2OH \xrightarrow{Al_2O_3} CH_2=CH_2$$

- IV. Реакции по α-углеродному атому
- 1. Окисление спиртов
- а) окисление хлором

$$CH_3CH_2OH + Cl_2 \xrightarrow{-HCl} CH_3CHOH \xrightarrow{-HCl} CH_3 - CC_H$$

б) Первичные спирты окисляются различными окислителями до альдегидов или карбоновых кислот:

R-CH₂-OH
$$\xrightarrow{\text{Cr}_2\text{O}_7^{2-}}$$
 R-C $\stackrel{\text{O}}{\longleftarrow}$ + 2Cr³⁺

R-CH₂-OH
$$\xrightarrow{\text{KMnO}_4}$$
 R-C $\xrightarrow{\text{O}}$ H₂O + 3 MnO₂ + 2 KOH

Вторичные спирты окисляются до кетонов:

$$\begin{array}{c}
\text{CH}_3\text{-CH-CH}_3 \xrightarrow{\text{CrO}_3} \text{CH}_3\text{-COOH} & \text{CH}_3\text{-C-CH}_3 + \text{H}_2\text{O} \\
\text{OH} & \text{O}
\end{array}$$

Дальнейшее окисление кетонов возможно с разрывом углеродуглеродных связей и образованием смеси карбоновых кислот:

(в общем случае 4 молекулы карбоновых кислот)

Третичные спирты в щелочной среде не окисляются, в кислой среде быстро отщепляют воду с образованием алкенов, которые затем подвергаются окислению по двойной связи.

2. Дегидрирование спиртов

R-CH₂-OH
$$\stackrel{Cu}{\underset{t=200-300}{\longrightarrow}}$$
 R-C $\stackrel{O}{\underset{H}{\longleftarrow}}$ + H₂

ОСОБЕННОСТИ ХИМИЧЕСКИХ СВОЙСТВ ДВУХ- И ТРЕХАТОМНЫХ СПИРТОВ

Обладают более сильными кислотными свойствами по сравнению с одноатомными спиртами.

1. Образование хелатных комплексов

2 HO-CH₂-CH₂-OH
$$\stackrel{\text{Cu(OH)}_2}{\longrightarrow}$$
 $\stackrel{\text{CH}_2}{\longrightarrow}$ $\stackrel{\text{CH}_2}{\longrightarrow}$ $\stackrel{\text{O}-\text{CH}_2}{\longrightarrow}$ $\stackrel{\text{O}-\text{CH}_2}{\longrightarrow}$ $\stackrel{\text{O}-\text{CH}_2}{\longrightarrow}$

гликолят меди,

темно-синего цвета

- качественная реакция на многоатомные спирты
- 2. Образование сложных эфиров

2 HO-CH₂-CH₂-OH + 2 HNO₃
$$\rightarrow \frac{\text{CH}_2-\text{CH}_2}{\text{ONO}_2 \text{ ONO}_2}$$
 + 2H₂O

динитрат этиленгликоля

3. Реакции дегидратации

Протекают при нагревании даже в присутствии слабых водоотнимающих средств

а) внутримолекулярная дегидратация:

$$CH_{2}CH_{2}OH$$
 — $CH_{2}=CH-OH$ — $CH_{3}=CH_{2}OH$ — $CH_{2}=CH-OH$ — $CH_{2}=CH-OH$ — $CH_{2}=CH-OH$ — $CH_{2}=CH-OH$ — $CH_{2}=CH-CH$ —

акролеин (бесцветный газ,

ядовит, оказывает раздражающее действие)

б) межмолекулярная дегидратация:

4. Пинаколиновая перегруппировка

При действии серной кислоты замещенные 1,2-диолы подвергаются дегидратации не с образованием соответствующих сопряженных алкадиенов (как это происходит в случае нагревания с НВг или на окиси алюминия при

t~450°C), а с 1,2-миграцией алкильной, арильной группы или гидрид-иона и образованием альдегида или кетона:

$$\begin{array}{c|ccccc} CH_3 & CH_3 & CH_3 & CH_3 \\ & & & & \\ CH_3-C-C-C+CH_3 & \xrightarrow{} & & \\ & & &$$

4. Окисление

РЕАКЦИОННАЯ СПОСОБНОСТЬ ФЕНОЛОВ

Фенолы проявляют схожие со спиртами химические свойства.

1. Взаимодействие с основаниями протекает легче, чем у спиртов, т.е. фенолы являются более сильными кислотами, чем многоатомные и одноатомные спирты (р K_a фенола в воде составляет 9,8), образуют феноляты уже при действии таких оснований, как NaOH или KOH.

$$\begin{array}{c|c} OH & ONa \\ \hline & \\ \hline & \\ \hline & \\ \hline \end{array} + H_2O$$

2. Образование фенолята железа – качественная реакция на фенолы:

3. Ацилирование и алкилирование фенолов

$$\begin{array}{c|ccccc}
ONa & O & O-C < O \\
\hline
CH_3-C & CI \\
\hline
- NaCI & O-CH_3
\end{array}$$

$$\begin{array}{c|ccccc}
OH & O-CH_3 \\
\hline
CH_3CI & - NaCI \\
\hline
\end{array}$$

Протекают не в бензольное кольцо, как S_E -реакции, а по группе –ОН по нуклеофильному механизму. Нуклеофильные свойства проявляет атом кислорода молекулы фенола, центр атаки нуклеофила – sp^2 -гибридный атом углерода ангидрида или галогенангидрида кислоты (ацилирующего агента в реакции ацилирования) или атом углерода, связанный с атомом галогена (в реакции алкилирования).

- 4. Реакции по неподеленной электронной паре, например, протонирование, протекают сложнее, чем у спиртов.
- 5. Для фенолов малохарактерны реакции с разрывом связи С-О, т.к. сопряжение неподеленной электронной пары атома кислорода с p_z -электронами бензольного ядра приводит к упрочнению этой связи.
- 6. Вследствие сильного электронодонорного влияния группы ОН на бензольное ядро реакции электрофильного замещения (S_E2) протекают очень легко, зачастую сразу в несколько положений:

OH OH OH
$$Br_2$$
 Br_2 Br_3 Br_4 Br_5 $CS_2, t = 0°C$ Br_5 Br_6 Br_7 Br_7 Br_8

Нитруют фенол по тем же причинам в очень мягких условиях

(разбавленной азотной кислотой при охлаждении):

OH OH OH
$$\begin{array}{c}
OH \\
\hline
10^{\circ}C
\end{array}$$

$$\begin{array}{c}
OH \\
NO_{2} \\
\hline
10^{\circ}C
\end{array}$$

$$\begin{array}{c}
OH \\
NO_{2} \\
\hline
10^{\circ}C
\end{array}$$

$$\begin{array}{c}
OH \\
NO_{2} \\
\hline
10^{\circ}C
\end{array}$$

7. Окисление многоатомных фенолов.

Резорцин окисляется очень медленно и в жестких условиях, пирокатехин и гидрохинон - легко. Гидрохинон при окислении дает п-бензохинон, который при взаимодействии с молекулами гидрохинона выпадает в осадок в виде темно-зеленых кристаллов хингидрона:

гидрохинон 1,4-бензохинон хингидрон

Хингидрон представляет собой классический пример молекулярных комплексов с переносом заряда, где один компонент служит донором, а другой является акцептором электрона.

Номенклатура и классификация

І. Нециклические:

Диалкиловые эфиры R-O-R (напр., CH_3 -O- CH_3 диметиловый эфир, метоксиметан)

Алкилариловые R-O-Ar (\bigcirc — OCH $_3$ метилфениловый эфир, метоксибензол)

Большинство из них - жидкости, являются хорошими растворителями, инертными к проводимым в них реакциям. Нециклические эфиры в воде практически нерастворимы, тогда как циклические часто смешиваются с ней в любых соотношениях.

Способы получения

1. Присоединение спиртов к алкенам в кислой среде

$$R-OH + R C=CH_2 \xrightarrow{H^+} R-O-C C-CH_3$$

Реакция имеет в основном промышленное значение

- 2. Межмолекулярная дегидратация спиртов:
- 2 R-OH o R-O-R в присутствии H_2SO_4 и при t<150°C
- 3. Несимметричные эфиры синтезируют по Вильямсону:

$$C_2H_5ONa + CH_3Cl \rightarrow C_2H_5OCH_3 + NaCl$$

Химические свойства

Характерна низкая реакционная способность.

1. Кислотное расщепление простых эфиров

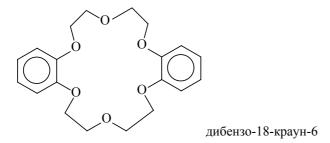
$$CH_3$$
-O- CH_3 + $HJ \xrightarrow{t} CH_3J + CH_3OH$

- типичный случай реакции нуклеофильного замещения у насыщенного атома углерода.
- 2. Эфиры образуют соли триалкилоксония при взаимодействии с очень сильными алкилирующими агентами:

$$R_2O + R'F \xrightarrow{SbF_5} \begin{bmatrix} R & \oplus \\ O - R' \end{bmatrix} SbF_6$$

3.
$$CH_3$$
-O- C_2H_5 $\xrightarrow{2 \text{ Na, t}}$ $CH_3\text{Na} + C_2H_5\text{ONa}$

4. Образование перекисей


$$\text{CH}_3\text{-CH}_2\text{-O-CH}_2\text{-CH}_3 \xrightarrow{\text{O}_2} \begin{array}{c} \text{CH}_3\text{-CH-O-CH}_2\text{-CH}_3 \\ \text{O-OH} \end{array}$$

Образующиеся соединения взрывоопасны, поэтому простые эфиры рекомендуется хранить под щелочью.

II. Циклические эфиры:

Инертны к большинству химических реагентов, используются как растворители.

III. Макроциклические эфиры:

Отличные селективные аналитические реагенты на ионы щелочных металлов (Na, K и др.), которые фиксируются циклами определенного размера за счет образования внутрикомплексных соединений.

Пояснения по выполнению контрольной работы.

Спирт 1а получают из заданного первичного галогенопроизводного, используя реакцию нуклеофильного замещения атома галогена на –ОН группу. Спирт 16 ((R-CH₂)₂CHOH - вторичный) получают при помощи синтеза с

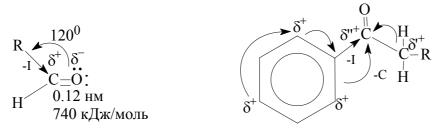
реактивом Гриньяра: вначале из заданного галогенопроизводного получают реактив Гриньяра, затем окислением спирта 1а получают альдегид, после чего проводят синтез с реактивом Гриньяра. Для получения третичного спирта (R-CH₂)₃COH в синтезе с реактивом Гриньяра используют кетон, полученный при окислении вторичного спирта 1б.

Для спирта 1a (первичного) записывают реакции с перечисленными в задании соединениями и приводят механизм реакции нуклеофильного замещения —OH группы спирта на —Br (механизм S_N1 или S_N2 в зависимости от строения спирта).

КАРБОНИЛЬНЫЕ СОЕДИНЕНИЯ (АЛЬДЕГИДЫ И КЕТОНЫ)

Содержат в своем составе карбонильную группу C=0 (альдегиды C=C, кетоны C=C).

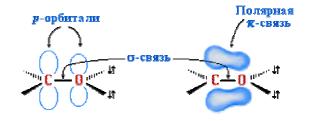
Номенклатура и классификация


Как и представители других классов функциональных производных углеводородов, классифицируются как насыщенные и ненасыщенные, линейные и циклические, ароматические и неароматические и т.д.

В соответствии с номенклатурой ИЮПАК насыщенные альдегиды называют, начиная нумерацию главной цепи с атома углерода, входящего в состав карбонильной группы и прибавляя к названию суффикс –аль. Кетоны называют, прибавляя суффикс –он. Существует также рациональная и тривиальная номенклатура, в случае рациональной углеродная цепь обозначается буквами греческого алфавита, при этом С-атом карбонильной группы не отмечается:

$$_{H-C}$$
 муравьиный альдегид, формальдегид, метаналь $_{CH_3-C}^{\alpha}$ уксусный альдегид, этаналь

СН₂=С=О кетен (ненасыщенный)


Строение и электронные эффекты функциональной группы

Атомы углерода и кислорода в карбонильной группе находятся в состоянии ${\rm sp^2}$ -гибридизации. Углерод посредством ${\rm sp^2}$ -гибридных орбиталей образует 3 σ -связи (одна из них - связь С–О), которые располагаются в одной плоскости под углом около 120° друг к другу. Одна орбиталей атома кислорода участвует в σ -связи С–О, две другие содержат неподеленные электронные пары.

 π -Связь образована p-электронами атомов углерода и кислорода.

Связь C=O сильно полярна. Ее дипольный момент (2,6-2,8D) значительно

выше, чем у связи С–О в спиртах (0,70D). Электроны кратной связи С=О, в особенности более подвижные π -электроны, смещены к электроотрицательному атому кислорода, что приводит к появлению на нем

частичного отрицательного заряда. Карбонильный углерод приобретает частичный положительный заряд. Поэтому карбонильная группа в альдегидах и кетонах является электроноакцепторным заместителем и может проявлять — I и — С эффекты.

Физические свойства

Являются жидкостями, за исключением метаналя и этаналя (газы), а также некоторых ароматических альдегидов и кетонов (твердые).

Альдегиды и кетоны не образуют водородных связей, поэтому температуры их кипения ниже, чем у соответствующих спиртов, однако эти молекулы способны образовывать водородные связи с молекулами воды, поэтому растворимы в ней.

Низшие члены ряда смешиваются с водой в любых соотношениях, однако уже растворимость бутаналя в воде составляет 7%. Ароматические соединения в воде малорастворимы.

Методы получения

1. Реакции окисления алкенов озоном

$$RCH = CR'' + O_3$$
 \longrightarrow $RCH - CR''$ \longrightarrow $RCH - R''$ \longrightarrow

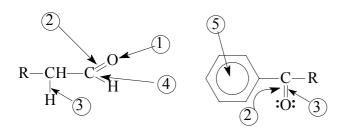
(в реакции в зависимости от строения алкена образуются альдегиды и/или кетоны)

- 2. Окисление спиртов в мягких условиях (см. раздел «свойства спиртов»)
- 3. Прямое карбонилирование (оксосинтез)

R-CH=CH₂ + CO + H₂
$$\xrightarrow{\text{Co}_2(\text{CO})_8}$$
 R-CH₂-CH₂-CH₂-CH₂-CH₄ R-CH-C $\overset{\text{O}}{\underset{\text{CH}_3}{\text{H}}}$

4. Гидролиз дигалогеналканов
$$H_3C = C - CH_3 = H_2O - CH_3 - C$$

5. Гидратация алкинов (реакция Кучерова).


$$R-C \equiv CH \xrightarrow{H_2O}_{Hg^{2+}, H_2SO_4} R-C = CH_2 \xrightarrow[OH]{} R-C - CH_3$$

6. Сухая перегонка солей карбоновых кислот

$$\begin{array}{c|c}
CH_3 & C & O \\
\hline
CH_3 & C & CH_3 - C - CH_3 \\
\hline
CH_3 & C & O \\
\hline
CH_3 - C - CH_3 \\
\hline
CH_3 - C -$$

Химические свойства

Реакционные центры:

- 1 Реакции по неподеленной электронной паре атома кислорода
- 2 Нуклеофильные реакции с участием частично положительно заряженного ${\rm sp}^2$ -гибридного атома углерода
- 3 Реакции по α-углеродному атому
- 4 Реакции с участием связи С-Н
- 5 Реакции ароматических альдегидов и кетонов с участием бензольного кольца

1. Кислотность (способность взаимодействовать с основаниями)

Альдегиды и кетоны проявляют свойства слабых С-Н кислот. Появление частичного положительного заряда на атоме углерода карбонильной группы вызывает поляризацию связи $\overset{\alpha}{\text{C-H}}$ и делает возможным отщепление протона, при этом устанавливается таутомерное кето-енольное равновесие, при нейтральном pH смещенное в сторону кето-формы:

кето-форма

енольная форма

При обычных условиях содержание енольной формы невелико, например в ацетоне ее содержится 10^{-4} %.

2. Основность (способность взаимодействовать с протоном кислоты), у карбонильных соединений выражена слабо

$$\begin{array}{c|c} H & O & +H^{\delta+}X^{\delta-} \\ \hline R-C & C & H \end{array} \qquad \begin{array}{c|c} H & \ddot{O}-H \\ \hline R-C & C & H \end{array} \right]^{+}X^{-}$$

3. Реакции Н-замещения у α-углеродного атома

Активность С-Н связи в α-положении молекулы повышена за счет электроноакцепторного действия (-І эффект) карбонильной группы.

- 4. Реакции нуклеофильного присоединения (основная группа реакций)
 - без отщепления (Ad_N-механизм)

1)
$$R-C$$
 $\stackrel{O}{\vdash}_{H}$ +CN- $\stackrel{\text{медленно}}{\longleftarrow}_{R}$ $\stackrel{CN}{\vdash}_{O}$ $\stackrel{H^{+}}{\longleftarrow}_{O}$ $\stackrel{CN}{\longleftarrow}_{O}$ $\stackrel{CN}{\longleftarrow}_{O}$ $\stackrel{CN}{\longleftarrow}_{O}$ $\stackrel{OK \, \text{инитрил}}{\longleftarrow}_{K \, \text{арбоновой кислоты}}$ 2) $R-C$ $\stackrel{OH}{\vdash}_{H}$ $\stackrel{CH}{\longleftarrow}_{OCH_{3}}$ $\stackrel{OCH_{3}}{\longleftarrow}_{H^{+}}$ $\stackrel{CH}{\longleftarrow}_{OCH_{3}}$ $\stackrel{OCH_{3}}{\longleftarrow}_{H^{+}}$ $\stackrel{CH}{\longleftarrow}_{OCH_{3}}$ $\stackrel{OCH_{3}}{\longleftarrow}_{H^{+}}$ $\stackrel{OCH_{3}}{\longleftarrow}_{OCH_{3}}$

$$H$$
 легко гидролизуется

- с отщеплением молекул (Ad_N - E -механизм)

4) $R-C \stackrel{O}{\vdash}_H + NH_3$
 $R-C \stackrel{I}{\vdash}_H - NH_2$
 $R-C \stackrel{I}{\vdash}_H - NH_2$

Оксимы в кислой среде подвергаются т.н. перегруппировке Бекмана, в результате которой получаются амиды карбоновых кислот:

Кроме NH_3 и гидроксиламина к альдегидам аналогичным образом могут присоединяться различные производные аммиака: гидразин, фенилгидразин, анилин и др. амины. Конечными продуктами реакции в случае первичных аминов являются имины (основания Шиффа), содержащие связь C=NH, а для вторичных аминов — енамины (ненасыщенные амины) C=N-.

Общая схема и механизм Ad_N-реакции:

$$R$$
 $C=O$ + H^+ Nucl $\xrightarrow{\text{медленно}}$ $R'-C-O$ \xrightarrow{R} $R'-C-OH$ $\xrightarrow{\text{быстро}}$ $R'-C-OH$ $\xrightarrow{\text{Nucl}}$

Общая схема и механизм Ad_N-E - реакции:

Нуклеофильное присоединение к альдегидам протекает с меньшими затратами энергии, чем присоединение к кетонам, вследствие того, что в альдегидной группе на карбонильном атоме углерода выше положительный заряд, который в кетонах нейтрализуется электронодонорным действием двух алкильных групп. Реакции протекают как у алифатических, так и у ароматических соединений.

5. Восстановление

$$R - C \stackrel{O}{\longleftarrow} + H_2 \stackrel{Ni, t}{\longrightarrow} R - CH_2 - OH \stackrel{[H]}{\longrightarrow} R - CH_3$$

6. Окисление

$$R - C \xrightarrow{O} \xrightarrow{[O]} R - COOH$$
 $R - C \xrightarrow{O} + 2 [Ag(NH_3)_2]OH \longrightarrow R - C \xrightarrow{O} + 3 NH_3 + H_2O + 2 Ag \downarrow$
оксила серебра

- реакция «серебряного зеркала» - качественная реакция на альдегиды.

Кетоны окисляются до карбоновых кислот трудно и в жестких условиях $(KMnO_4,\,H_2SO_4_{\, \text{конц.}},\,t)$

7. Присоединение галоген-нуклеофилов по карбонильной группе с последующим отщеплением

$$R - C \xrightarrow[H]{O} PCl_5 R - C - H + POCl_3$$

8. Реакции конденсации

$$a)$$
 $H = \begin{pmatrix} \delta^+ & \delta^- & \bullet \\ H & + & \bullet \\ \end{pmatrix} \begin{pmatrix} \delta^+ & \bullet \\ \bullet & \bullet \\ \end{pmatrix}$ CH_2 -OH — полимер

Дальнейшее взаимодействие приводит к образованию фенолформальдегидных смол.

б) альдольная конденсация:

$$\begin{array}{c} H \\ R-\overset{\downarrow}{C}-C \overset{O}{-} H \\ \overset{\downarrow}{H} \end{array} + :B \\ \begin{array}{c} R \overset{\downarrow}{C}-C \overset{\downarrow}{-} H \\ \end{array} \begin{array}{c} R \overset{\downarrow}{-} C \overset{\downarrow}{-} C \overset{\downarrow}{-} H \\ \end{array} \begin{array}{c} H & \overset{\downarrow}{C} \overset{\downarrow}{-} C \overset{\downarrow}{$$

В реакции участвуют две одинаковые или разные молекулы альдегидов или кетонов, C_{α} -атом одной из которых выступает как нуклеофил в отношении карбонильной группы другой молекулы.

в) кротоновая конденсация:

$$CH_{2} \xrightarrow{CH-CH-C} CH \xrightarrow{O} H \xrightarrow{H^{+}} CH_{2} \xrightarrow{CH_{2}-CH=C-C} CH$$

Для альдегидов характерно большое число реакций конденсации, среди которых сложноэфирная, бензоиновая, конденсация Кляйзена, Перкина и другие.

9. Полимеризация

При стоянии альдегиды склонны к образованию циклических или полимерных ацеталей. Формальдегид при этом дает твердый линейный полимер, называемый параформальдегидом (параформ):

Параформ при нагревании до 180-200°C регенерируется в формальдегид.

Формальдегид образует также циклический тример – триоксан, такой же триммер для ацетальдегида называется паральдегид:

$$OOOO$$
 OOO OOO

триоксан

паральдегид

Оба тримера при нагревании со следами кислот деполимеризуются до альдегидов.

37%-й водный раствор формальдегида называют формалином.

В нем имеет место равновесие $H-C \stackrel{O}{\longleftarrow}_{H} + H_2O \stackrel{H}{\longleftarrow}_{OH}$, которое сильно смещено вправо ($K > 10^3$). В случае ацетона величина K, напротив, составляет всего 10^{-2} .

- 10. Специфические реакции.
- а) В отличие от насыщенных альдегидов, ароматические производные хлорируются по C-H связи альдегидной группы:

б) Реакция диспропорционирования (Канницаро)

Реакция характерна для любых альдегидов, не имеющих атомов водорода у α-углеродного атома. В противном случае в этих условиях протекает альдольная конденсация.

Пояснения по выполнению контрольной работы.

Альдегид R-CH₂-COH (с числом атомов углерода на 1 больше, чем в получают заданном галогенопроизводном) первичного ИЗ галогенопроизводного R-CH₂-X путем превращения его в реактив Гриньяра, взаимодействия последующего метаналем И МЯГКОГО окисления синтезированного т.о. первичного спирта (3 стадии). Записывают для него реакции окисления, восстановления и нуклеофильного присоединения, механизм реакции присоединения. Записывают уравнения альдольной и кротоновой конденсации альдегида R-CH₂-COH. Ацеталь получают через полуацеталь последовательным действием на альдегид R-CH₂-COH двух молекул спирта R-CH₂OH, синтезированного в задании 1, с указанием условий реакции.

КАРБОНОВЫЕ КИСЛОТЫ

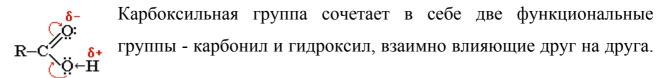
Соединения, имеющие в своем составе одну (одноосновные) или несколько (двух- и более основные) карбоксильных групп –СООН.

Номенклатура и классификация

Названия карбоновых кислот строят от названий соответствующих им углеводородов, численную нумерацию главной цепи начинают от атома

углерода, входящего в состав карбоксильной группы, добавляя к названию « овая кислота», например:

По рациональной номенклатуре цепь принято обозначать греческими буквами.


Наряду с названиями по систематической номенклатуре используют тривиальные названия (даны в скобках):

Предельные одноосновные кислоты:	С ₄ Н ₉ -СООН пентановая
Н-СООН метановая (муравьиная)	(валериановая)
СН ₃ -СООН этановая (уксусная)	С ₅ Н ₁₁ -СООН гексановая (капроновая)
С ₂ Н ₅ -СООН пропановая (пропионовая)	$C_{15}H_{31}$ -СООН (пальмитиновая)
С ₃ Н ₇ -СООН бутановая (масляная)	С ₁₇ Н ₃₅ -СООН (стеариновая)
Предельные многоосновные кислоты:	Непредельные одноосновные:
НООС-СООН щавелевая	CH ₂ =CH-COOH акриловая
НООС-СН2-СООН малоновая	СН ₃ -СН=СН-СООН кротоновая
НООС-СН2-СН2-СООН янтарная	Непредельные многоосновные:
CH ₂ —COOH	HOOC-CH=CH-COOH
НО—С—СООН лимонная	Малеиновая (цис-изомер)
ĊH ₂ —COOH	Фумаровая (транс-изомер)

Ароматические карбоновые кислоты:

СООН СООН СООН СООН Н—С О формил-
$$C_2H_5-C$$
 О Формил- C_2H_5-C О СТАТКИ КАРБОНОВЫХ КИСЛОТ НАЗЫВАЮТ $AUUNAMU$:

Строение функциональной группы

На атоме углерода карбоксильной группы возникает частичный положительный заряд, поэтому карбоксильная группа является электроноакцептором как в ароматических, так и в предельных карбоновых кислотах (проявляет –I и, где это возможно, –C эффекты).

Кислотные свойства карбоновых кислот обусловлены смещением электронной плотности к карбонильному кислороду за счет π -сопряжения и вызванной этим дополнительной (по сравнению со спиртами) поляризации связи O–H.

Физические свойства

Низшие члены ряда карбоновых кислот — ассоциированные жидкости с высокими температурами кипения, резким запахом. Высшие — нерастворимые в воде, твердые. Ароматические карбоновые кислоты — малорастворимые в воде кристаллические вещества со слабым запахом и температурами плавления выше 100° C.

Температура кипения этанола C_2H_5OH равна $78,5^{\circ}C$, тогда как у уксусной кислоты $t_{\kappa}=118^{\circ}C$.

Растворимость в воде и высокие температуры кипения обусловлены образованием межмолекулярных водородных связей, прочность которых ($E_{cb.} \approx 30 \text{ кДж/моль}$) выше, чем у спиртов. В чистых карбоновых кислотах молекулы находятся в виде димеров:

Методы получения

- 1. Окисление спиртов, альдегидов и кетонов, алкенов (см. разделы «Гидроксисоединения» и «Карбонильные соединения»)
 - 2. Гидролиз нитрилов карбоновых кислот

$$R-C\equiv N+2 H_2O(H^+) \rightarrow R-COOH+NH_4^+$$

Карбоновые кислоты получают и при гидролизе других их функциональных производных – амидов, ангидридов и галогенангидридов, сложных эфиров.

3. Магнийорганический синтез

$$R-MgBr + C'' \longrightarrow R-C'' \xrightarrow{O} \frac{H_2O}{-Mg(OH)Br}R-C''$$

4. Карбонилирование алкенов

R-CH=CH₂ + CO + H₂O
$$\xrightarrow{\text{Ni(CO)}_4}$$
 R-COOH

5. Окисление боковых цепей в алкиларенах

6. Синтез на основе малонового эфира

Малоновый эфир — диэтиловый эфир малоновой кислоты. Две карбоксильные группы оказывают на sp^3 -гибридный атом углерода в α -положении малоновой кислоты электроноакцепторное действие, вследствие чего у него возникают кислотные свойства, т.е. способность взаимодействовать с сильными основаниями и щелочными металлами:

Синтез с малоновым эфиром позволяет получать как одноосновные, так и двухосновные (если исключить последнюю стадию) карбоновые кислоты.

7. Синтез на основе ацетоуксусного эфира

Синтез с ацетоуксусным эфиром может быть проведен с целью получения как кетона, так и карбоновой кислоты с заданным числом атомов углерода.

$\frac{X$ имические свойства Реакционные центры: R-CH-CO-H

- 1 Реакции с разрывом связи О-Н (кислотность, комплексообразование и др.)
- 2 Реакции, приводящие к отщеплению OH группы (образование функциональных производных карбоновых кислот)
 - 3 Реакции с отщеплением -СООН группы (декарбоксилирование)
 - 4 Реакции замещения атома водорода при α-углеродном атоме

1. Кислотные свойства

R-COOH +NaOH \rightarrow R-COONa + H₂O, выражены сильнее, чем у спиртов (в 10^{11} и более раз).

При диссоциации в водном растворе образуются карбоксилат-ионы. Строение карбоксилат-иона:

$$\delta^-$$
 В карбоксилат-ионе обе связи С-О эквивалентны, отрицательный заряд поровну распределен между двумя атомами кислорода (образуется трехцентровая молекулярная орбиталь).

Электроноакцепторные заместители в углеводородном фрагменте R увеличивают силу кислот, электронодонорные – уменьшают.

Ароматические карбоновые кислоты являются более сильными за счет стабилизации карбоксилат-иона, р K_a уксусной кислоты равен 4,75, тогда как у бензойной кислоты C_6H_5COOH этот показатель составляет 4,20.

Соли карбоновых кислот называют *карбоксилатами* – HCOOM формиаты, CH₃COOM ацетаты, CH₃CH₂COOM пропионаты и т.д.

2. Взаимодействие с сильными минеральными кислотами (протонирование)

$$R - C \stackrel{"}{\searrow} + H^{+} \longrightarrow \begin{bmatrix} R - C \stackrel{"}{\searrow} & R - C \stackrel{"}{\Longrightarrow} & R$$

Т.о. карбоновые кислоты проявляют не только кислотные, но и слабые основные свойства.

3. Образование функциональных производных карбоновых кислот.

$$R-C_{OH}^{O}+PCl_{5}$$
 — $R-C_{Cl}^{O}+POCl_{3}$ — галогенангидридов $= 2 R-C_{OH}^{O}+PCl_{5}$ — $R-C_{OH}^{O}+P_{2}O_{5}$ — $R-C_{OH}^{O}+$

$$R-C$$
 ОН + НО-R' $R-C$ О—R' + H_2O - сложных эфиров

Для реакций нуклеофильного замещения у ${\rm sp}^2$ -гибридного ацильного атома углерода реализуется двухстадийный механизм присоединения-отщепления.

Механизм реакции этерификации (образования сложного эфира):

Функциональные производные карбоновых кислот можно превращать друг в друга и гидролизом в кислой или щелочной средах — в соответствующие исходные карбоновые кислоты. По изменению реакционной способности в реакциях нуклеофильного замещения с отщеплением производные карбоновых кислот можно расположить в ряд:

$$R-C < \begin{cases} O \\ X \end{cases} > R-C < \begin{cases} O \\ O \\ O \end{cases} > R-C < \begin{cases} O \\ OR' \end{cases} > R-C < \begin{cases} O \\ OH \end{cases} > R-C < \begin{cases} O \\ NH_2 \end{cases} > R-C = N$$

4. Реакции декарбоксилирования

CH₃-COONa
$$\xrightarrow{\text{NaOH, t}}$$
 CH₄ + Na₂CO₃

$$\xrightarrow{\text{COOH}} 150^{\circ}\text{C}$$

$$\xrightarrow{\text{COO}} 150^{\circ}\text{C}$$

$$\xrightarrow{\text{HOOC-CH}_2\text{-COOH}} \xrightarrow{\text{t}} \text{CH}_3\text{COOH} + \text{CO}_2$$

Достаточно легко декарбоксилированию подвергаются ароматические и многоосновные карбоновые кислоты (при более низких температурах, до 150° C). В последнем случае отщепление CO_2 происходит вследствие взаимного электроноакцепторного действия –СООН групп.

5. Реакции в углеводородном остатке

$$R-CH_2-COOH + Br_2 \xrightarrow{P_{KP.}} R-CH-COOH$$

Протекает с участием СН-группировки α-углеродного атома.

COOH
$$\begin{array}{c}
HNO_3 \\
H_2SO_4
\end{array}$$

$$\begin{array}{c}
+ H_2O
\end{array}$$

6. Восстановление карбоновых кислот и их производных.

R-COOH
$$\xrightarrow{\text{LiAlH}_4}$$
 R-CH₂OH

R-COOCI $\xrightarrow{\text{[H]}}$ R-COH

R-CONH₂ $\xrightarrow{\text{[H]}}$ R-CH₂NH₂

Жиры

Жиры (триглицериды) - сложные эфиры глицерина и высших одноатомных карбоновых кислот.

В состав природных триглицеридов входят остатки насыщенных кислот (пальмитиновой $C_{15}H_{31}COOH$, стеариновой $C_{17}H_{35}COOH$ и др.) и ненасыщенных (олеиновой $C_{17}H_{33}COOH$, линолевой $C_{17}H_{29}COOH$ и др.).

Животные жиры чаще всего являются твердыми веществами с невысокой температурой плавления (исключение - рыбий жир), состоят главным образом из триглицеридов насыщенных кислот.

Растительные жиры - масла - жидкости (исключение - кокосовое масло). В состав триглицеридов масел входят остатки ненасыщенных кислот.

Жидкие жиры превращают в твердые путем реакции гидрогенизации (гидрирования):

Жиры, как и другие сложные эфиры, гидролизуются обратимо с образованием исходных глицерина и высших карбоновых кислот. В присутствии щелочей гидролиз жиров происходит необратимо. Продуктами в этом случае являются мыла - соли высших карбоновых кислот и щелочных металлов.

Натриевые соли представляют собой твердые мыла, калиевые - жидкие.

Пояснения по выполнению контрольной работы.

Карбоновую кислоту RCOOH получают окислением спирта R-CH₂OH. Кислоту с числом атомов углерода больше на 1 (R-CH₂COOH) больше можно получить замещением в заданном галогенопроизводном R-CH₂-X атома галогена на группу -СN (см. св-ва галогенопроизводных углеводородов) и гидролизом полученного т.о. нитрила карбоновой кислоты в кислой среде. Далее записывают реакции образования функциональных производных этой карбоновой кислоты и их гидролиза до исходной кислоты (с указанием условий), реакции этерификации кислоты R-CH₂COOH. механизм использованием ацетоуксусного и малонового эфира получают карбоновую кислоту углерода n+2числом атомов при ЭТОМ качестве галогенопроизводного R-X в синтезе используют заданное. Кетон (R-CH₂)₂CO получают пиролизом синтезированной кислоты R-CH₂COOH, кетон R-CH₂COCH₃ получают по пути 2) в описанном выше синтезе с ацетоуксусным эфиром. При действии гидроксиламина на полученный кетон R-CH₂COCH₃ образуется оксим, который проявляет способность к цис-транс- (син-анти) изомерии:

$$R-CH_2$$
 OH $R-CH_2$ $C=N$ OH CH_3 $C=N$ OH CH_3 $C=N$ OH CH_3 $C=N$ OH

АЗОТСОДЕРЖАЩИЕ ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ

Азот — элемент V группы 2-го периода Периодической системы элементов; порядковый номер 7; атомная масса 14. $2 \, \mathrm{p}^3$

Электронная конфигурация в основном состоянии $2 s^2 \wedge \wedge \wedge 1 s^2 2 s^2 2 p^3$.

На внешнем энергетическом уровне в атоме азота находятся 3 неспаренных электрона, за счет которых он может образовывать ковалентные связи с другими атомами, а также неподеленная электронная пара, которая может участвовать в образовании донорно-акцепторной связи.

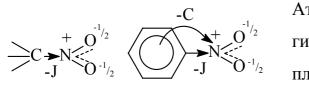
Существует большое число классов азотсодержащих органических соединений. Здесь будут рассмотрены свойства только трех из них.

НИТРОСОЕДИНЕНИЯ

- содержат в своем составе группу $-NO_2$.

Номенклатура и классификация

Нитросоединения называют по номенклатуре ИЮПАК добавляя приставку «нитро-» к названию соответствующего углеводорода. Положение нитрогруппы указывают цифрой.


$$CH_3$$
— CH - $CH_2CH_2CH_3$
 O
 CH_3
 CH_3

2-нитропентан

α-нитроэтилбензол

Различают нитроалканы (со связью C_{sp} 3-NO₂), нитроалкены (со связью C_{sp} 2- NO₂) и нитроарены (соединения типа Ar-NO₂).

Строение функциональной группы

Атом азота в нитрогруппе образует 3 sp²-гибридные связи, лежащие в одной плоскости. В результате возникает трехцентровая π -связь, поляризованная в

сторону атомов кислорода. Поскольку атом азота заряжен положительно, нитрогруппа проявляет отрицательный индукционный эффект (-I) и, если это возможно, отрицательный эффект сопряжения (-C), являясь сильным электроноакцептором.

Физические свойства

Нитросоединения малорастворимы в воде (10% при 293К в случае CH_3NO_2), нитроарены имеют слабо-желтую окраску. Хромофоры. Применяются в качестве полярных ($\mu = 3,1-4,2$ D), инертных к окислителям высококипящих ($t\kappa > 100$ °C) растворителей. Ядовиты. Взрывоопасны.

Методы получения

- 1. Прямое нитрование
- а) нитрование алканов по Коновалову
- б) нитрование гомологов бензола разбавленной азотной кислотой в боковую цепь
- радикальные реакции (Методические указания «Строение и свойства углеводородов»)
 - в) нитрование аренов в бензольное ядро

2. Первичные нитроалканы преимущественно получают алкилированием нитрита серебра в эфире, вторичные – алкилированием нитрита натрия в ДМФА:

$$R-CH_2-Cl + AgNO_2 \xrightarrow{9 \text{фир}} R-CH_2-NO_2 + NaCl$$

Химические свойства

Реакционные центры:

- 1 Реакции по атому азота (восстанов-
- R—CH—N—O атома (таутомерия, взаимодействие с основаниями, электрофильное замещение Натома)

Нитрогруппа отличается высокой стабильностью по отношению к электрофильным реагентам и разнообразным окислителям.

1. Таутомерия (изомеризация)

Атом водорода при α-углеродном атоме подвижен из-за электроноакцепторного действия нитрогруппы, поэтому может отщепляться или замещаться.

$$H \to C - N = 0^{-1/2}$$
 ОН $H \to C - N = 0^{-1/2}$ ОН $H \to C - N = 0^{-1/2}$ ОН $H \to C - N = 0$ $H \to C - N = 0$ Нитро-форма существует в щелочной среде нитроновая кислота

2. Взаимодействие с азотистой кислотой

Аналогичным образом в α-положение протекают реакции алкилирования галогенопроизводными углеводородов в присутствии оснований, или взаимодействие с молекулами галогенов в щелочной среде.

3. Восстановление ароматических нитросоединений

Восстановление органических соединений может с формальной точки зрения рассматриваться как процесс отнятия кислорода, присоединения атомов водорода, или оба процесса, протекающие одновременно. Восстановление нитросоединений проводят металлами в кислой или щелочной среде, в присутствии растворов электролитов, а также водородом в присутствии катализаторов.

Восстановление нитросоединений до первичных аминов в кислой среде идет ступенчато и включает три стадии с переносом электронов:

$$NO_2$$
 е , H^+ мнтрозобензол фенилгидроксиламин анилин азоксибензол е OH^- он H_2SO_4 H_2N NH_2 NH_2 NH_2N NH_2 NH_2N NH_2 NH_2N NH_2 NH_2N NH_2 NH_2N NH_2 NH_2N NH_2 NH_2

В щелочной среде нитрозобензол быстро взаимодействует со вторым промежуточным продуктом восстановления – фенилгидроксиламином, с

образованием азоксибензола. Дальнейшее восстановление в щелочной среде приводит к образованию более восстановленных форм — азобензола и гидразобензола. Гидразобензол восстанавливается до анилина хлоридом олова (II) в соляной кислоте.

Изменяя условия реакции восстановления, можно остановить ее на стадии образования практически любого промежуточного соединения.

В промышленности анилин получают каталитическим восстановлением нитробензола на медном или никелевом катализаторе.

Селективное восстановление нитросоединений (или восстановление только одной из нескольких нитро-групп) осуществляется при действии сульфидов или полисульфодов на полинитросоединение:

$$\begin{array}{c|c}
NO_2 & Na_2S_2 \\
NO_2 & NO_2
\end{array}$$

$$\begin{array}{c|c}
NH_2 \\
+ NaOH + H_2O + NaHSO_4
\end{array}$$

4. Кислотные свойства нитросоединений.

Нитросоединения, имеющие атомы водорода у α-углеродного атома, являются СН-кислотами, их сила возрастает с увеличением числа нитро-групп:

$$CH_3NO_2 < NO_2-CH2-NO_2 < CH(NO_2)_3$$

 $pK_a = 10,2$ $pK_a = 4,0$ $pK_a \approx 0$

АМИНЫ

- содержат в своем составе группу –NH₂.

Номенклатура и классификация

В зависимости от строения углеводородного заместителя различают алифатические и ароматические амины, линейные и циклические моно- и диамины; в зависимости от числа групп, связанных с атомом азота: первичные $R-NH_2$, вторичные R-NH-R', третичные R-N(R')R''.

Амины называют по рациональной номенклатуре, перечисляя углеводородные заместители, связанные с атомом азота и добавляя корень «амин». По систематической номенклатуре (ИЮПАК) называют углеводород как алкан с наибольшей углеродной цепью, замещенный первичной или вторичной аминогруппой:

$$_{\text{CH}_3}$$
 диметилэтиламин $_{\text{CH}_3}$ — $_{\text{CH}_2}$ — $_{\text{N}}$ — $_{\text{CH}_3}$ диметиламиноэтан $_{\text{NH}_2}$ $_{\text{CH}_3}$ — $_{\text{CH}_2}$ — $_{\text{CH}_2}$ — $_{\text{CH}_3}$ — $_{\text{CH}_3}$ — $_{\text{CH}_2}$ — $_{\text{CH}_3}$

Для некоторых аминов возможны тривиальные названия:

Физические свойства

Алкиламины с небольшим числом атомов углерода — при н.у. бесцветные газы или жидкости со своеобразным резким запахом, легко растворяются в воде, особенно в кислых средах. Высшие амины — кристаллические вещества с ограниченной растворимостью в воде. Имеют невысокую полярность — 0,9-1,5 D. На воздухе окисляются (особенно ароматические) с образованием продуктов осмоления.

Амины образуют межмолекулярные водородные связи, прочность которых ниже по сравнению с водородными связями молекул спиртов, что видно и по их температурам кипения (t_{κ} ($C_2H_5NH_2$) = $16,6^{\circ}C$).

Строение функциональной группы

$$\alpha_1 = \alpha_2$$
 $\alpha_1 = \alpha_2$ $\alpha_2 = \alpha_1$ $\alpha_1 = \alpha_2$ $\alpha_2 = \alpha_2$ $\alpha_1 = \alpha_2$ $\alpha_2 = \alpha_2$ $\alpha_1 = \alpha_2$ $\alpha_2 = \alpha_3$ $\alpha_1 = \alpha_4$ $\alpha_2 = \alpha_4$ $\alpha_2 = \alpha_4$ $\alpha_1 = \alpha_4$ $\alpha_2 = \alpha_4$ $\alpha_2 = \alpha_4$ $\alpha_3 = \alpha_4$ $\alpha_4 = \alpha_4$ $\alpha_5 = \alpha_5$ α_5

Алифатические амины имеют пирамидальное строение молекулы, подобно молекуле аммиака (∠ 106-108°). В вершине пирамиды находится атом азота и его неподеленная электронная пара. В алифатических аминах аминогруппа проявляет отрицательный индукционный (-I) эффект, является электроноакцептором. В ароматических аминах неподеленная электронная пара атома азота включается в ароматическую систему, т.о. аминогруппа проявляет +С — эффект, являясь сильным электронодонором. Для аминов характерен особый тип структурной изомерии — метамерия, связанный с различным расположением одинакового числа углеродных атомов у трех NH-связей:

$$CH_3$$
- CH_2 - CH_2 - NH_2 CH_3 - CH_3 - NH - CH_3 $(CH_3)_3N$ – метамеры

Кроме того, в силу их пирамидального строения, для аминов характерна инверсия молекулы относительно атома азота:

Методы получения

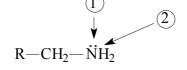
- 1. Восстановление нитросоединений (образуются первичные амины) (см. выше)
 - 2. Алкилирование аммиака и аминов

При этом образуются смеси первичных, вторичных и третичных аминов. Дальнейшее алкилирование третичных аминов приводит к образованию четвертичных алкиламмониевых солей $[R_4N]X$.

- 3. Восстановление
- а) амидов карбоновых кислот

$$R-C$$
 NH_2
 NH_2
 NH_2
 $R-CH_2-NH_2$

б) нитрилов карбоновых кислот


$$R-C\equiv N$$
 $\xrightarrow{\text{LiAIH}_4}$ $R-CH_2-NH_2$

в) при восстановлении изоцианидов получают вторичные амины

$$R-NC \xrightarrow{[H]} R-NH-CH_3$$

Химические свойства

Реакционные центры:

1 — Реакции с участием неподеленной электронной пары 2 — Реакции с участием NH-связи аминогруппы

1. Протонирование и комплексообразование.

Амины – основания, способные за счет неподеленной электронной пары

Ряд основности аминов в газовой фазе:

первичные ароматические амины

где D и A – электронодонорный и электроноакцепторный заместитель, соответственно;

R – алкильный заместитель, углеводородный фрагмент молекулы.

В растворе ряд основности меняется, например, вторичный амин является более сильным основанием, чем третичный.

При действии гидроксида серебра на йодиды тетразамещенного аммония образуются растворы соответствующих гидроокисей, являющиеся очень сильными основаниями:

$$R_4N^+J^- + AgOH \rightarrow AgJ + R_4N^+OH^-$$

гидроксид тетраалкиламмония

Гидроксиды тетраалкиламмония отщепляют СН-протон под действием гидроксид-иона с образованием алкена и триалкиламина (расщепление по Гофману):

$$\begin{array}{c|c}
& \oplus \\
N(CH_3)_3OH \\
CH_3 & \hline{H_2O}
\end{array}$$

$$\begin{array}{c|c}
& CH_2 + N(CH_3)_3 + H_2O
\end{array}$$

Продуктом элиминирования является наименее замещенный при двойной связи алкен.

2. Ацилирование аминов.

$$R-CH_2-NH_2 + CH_3-C$$
 Cl
 $R-CH_2-NH-C$
 CH_3

Реакция проходит по механизму нуклеофильного замещения (амин является нуклеофилом).

- 3. Взаимодействие аминов с азотистой кислотой.
- а) первичные амины
- алифатические

при действии на первичный алифатический амин образуются крайне неустойчивые алифатические соли диазония, которые распадаются с выделением азота, при этом образуется смесь продуктов (спиртов и алкенов с примесью галогенопроизводных). Например, для н-бутиламина:

$$CH_{3}CH_{2}CH_{2}CH_{2}NH_{2} + HNO_{2} \xrightarrow{H^{+}} \begin{bmatrix} CH_{3}CH_{2}CH_{2}CH_{2} - N \equiv N \end{bmatrix} \xrightarrow{H_{2}O} \xrightarrow{CH_{3}CH_{2}CH_{2}CH_{2}OH + 1-буганол (25\%)}$$
 + $CH_{3}CHCH_{2}CH_{3} + CH_{3}CH_{2}CH_{$

– ароматические

в случае ароматического амина образуется относительно устойчивая при низких температурах ароматическая соль диазония:

$$\begin{array}{c|c}
NH_2 & N \stackrel{+}{=} N \\
\hline
NaNO_2 & \\
\hline
2HCl & \\
t=0^{\circ}C & \\
\end{array}$$
+ NaCl+ 2 H₂O

Более высокая устойчивость ароматической соли диазония обеспечивается за счет того, что положительный заряд атома азота делокализуется в бензольное ядро, тогда как в случае алифатической соли диазония такой делокализации нет.

б) вторичные амины образуют N-нитрозоамины

– алифатические

- ароматические

$$NH-CH_3$$
 $O=N-N-CH_3$ $H-N-CH_3$ $NaNO_2$ HCl C_2H_5OH N -нитрозо- N -метиланилин $N=O$ N -метиланилин

Ароматические N-нитрозосоединения могут перегруппировываться с миграцией нитрозогруппы в пара-положение бензольного кольца.

- в) третичные амины
- алифатические

могут образовывать продукты присоединения:

$$R_3N + [NO]^+X^- \longrightarrow [R_3N^+ - N=O]X^-$$

– ароматические

Нитрозируются в пара-положение бензольного кольца.

Реакция взаимодействия аминов с азотистой кислотой проводится как для идентификации амина (первичный, вторичный, третичный, алифатический, ароматический), так и для получения ароматических солей диазония — полупродуктов для проведения многих синтезов (например, получения азокрасителей).

4. Галогенирование первичных и вторичных алифатических аминов

$$RNH_2 + 2 NaOCl \xrightarrow{0-5^{\circ}C} RNCl_2 +$$

5. Окисление аминов

Третичные амины окисляются легче всего из-за повышенной основности:

$$R_3N + H_2O_2 \rightarrow R_3N \rightarrow O + H_2O$$

N - оксид

Первичные амины окисляются намного сложнее, в соответствии со схемой:

$$RNH_2 \longrightarrow RNH-OH \longrightarrow R-N=O$$

6. Ароматические амины — реакционноспособные в $S_E 2$ -процессах соединения. С ними нельзя проводить реакции сульфирования, нитрования; активность аминогруппы понижают с помощью ацилирования.

Ацилирование является также защитой аминогруппы от окисления в ходе синтеза, после которого защиту гидролизуют:

В противном случае, например, реакция бромирования, в ароматических аминах протекает по всем трем (орто- и пара-) положениям:

$$\begin{array}{c|c}
NH_2 & NH_2 \\
\hline
+3 Br_2 & Br
\end{array}$$

$$\begin{array}{c|c}
Br
\end{array}$$

$$\begin{array}{c|c}
Br
\end{array}$$

ДИАЗОСОЕДИНЕНИЯ

- содержат в своем составе группу $-N^+ \equiv N$ (соли диазония) или -N = N - X (диазосоединения с ковалентными связями)

Строение функциональной группы

Группа $-N^+$ ≡N имеет линейное строение, положительный заряд сосредоточен на атоме азота, контактном с соль диазония диазотат

атомом углерода бензольного ядра, частично делокализуется на соседний атом азота и в бензольное ядро, что делает ароматические соли диазония устойчивее алифатических. Последние разлагаются в момент образования. Диазотаты являются устойчивой формой диазосоединений, их можно хранить и транспортировать. Соли диазония устойчивы только в растворах при низких температурах. При высыхании взрываются. В ароматических солях диазония диазогруппа является сильным электроноакцептором (проявляет –I и –C – эффекты).

Номенклатура и классификация

Существует 2 типа ароматических диазосоединений:

ковалентные диазосоединения Ar-N=N-X $\,$ и $\,$ соли диазония $[Ar-N^+\!\!\equiv\!\!N]X^-$

Получаются при диазотировании:

$$Ar-NH_2 + O=N-OH + HX$$
 $\xrightarrow{0-5 \text{ oC}}$ $[Ar-N^+ \equiv N]X^- \xrightarrow{OH^-} Ar-N=N-O^-$

- в щелочной среде соли диазония переходят в диазотаты.

Химические свойства

Для солей диазония характерны 2 типа реакций:

- I. Реакции без выделения азота
- 1. Азосочетание (получение азокрасителей)

Протекает по механизму электрофильного замещения (S_E).

$$N = N$$
 $N = N$ $N =$

где D — сильный электронодонорный заместитель —OH, —OR, —NH $_2$, —NHR или —NR $_2$.

Реакции азосочетания протекают только в том случае, если в ароматической системе азосоставляющей есть сильный электронодонорный заместитель, т.к. в качестве атакующей частицы выступает катион диазония, электрофильная способность которого очень низка.

С фенолами реакция азосочетания протекает в слабощелочной среде (pH = 9-10):

$$O^{+} \longrightarrow O^{-} \longrightarrow O^{-$$

В слабощелочной среде образуется фенолят-ион, в котором заместитель $-O^-$ обладает бо́льшим электронодонорным действием, чем группа -OH, что приводит к облегчению протекания реакции азосочетания.

С аминами азосочетание проходит в слабокислой (рН = 5-6) среде.

Амины малорастворимы в щелочной среде и хорошо растворимы в слабокислой, однако в сильнокислой среде подвергаются протонированию, вследствие чего азосочетание при рН<4 не протекает.

2. Восстановление

Восстановлением солей диазония можно получить замещенные гидразины:

$$Ar-N_{2}^{+}Cl^{-} + NaHSO_{3}$$
 \rightarrow $Ar-N=N-SO_{3}H + NaCl$
 $Ar-N=N-SO_{3}H$ $\xrightarrow{H_{2}SO_{3}; H_{2}O}$ $\xrightarrow{-H_{2}SO_{4}}$ $Ar-NH-HN-SO_{3}H$ $\xrightarrow{+H_{2}O; H_{2}SO_{4}}$ \rightarrow
 \rightarrow $Ar-NH-NH_{3}^{+}HSO_{4}^{-} \xrightarrow{+NaOH}$ $\xrightarrow{-NaHSO_{4}}$ $Ar-NH-NH_{2}$

- II. Реакции с выделением азота.
- 1. Нуклеофильное замещение диазогруппы

2. Реакции Зандмейера

$$\stackrel{+}{\underset{R}{\bigvee}}$$
 + $\stackrel{-}{\underset{R}{\bigvee}}$ + $\stackrel{-}{\underset{R}{\bigvee}}$ + $\stackrel{-}{\underset{R}{\bigvee}}$ + $\stackrel{-}{\underset{R}{\bigvee}}$ + $\stackrel{-}{\underset{R}{\bigvee}}$ + $\stackrel{-}{\underset{R}{\bigvee}}$ где X = $C1$, Br , CN , CNS и т.д.

3. Разложение сухого тетрафторбората диазония (введение атома F в бензольное кольцо

$$\begin{bmatrix}
N \stackrel{+}{=} N \\
BF_4
\end{bmatrix}$$

$$F + BF_3 + N_2$$

4. Восстановление

При восстановлении солей диазония в спирте в присутствии порошка меди происходит замещение диазогруппы на водород по реакции:

$$ArN_2^+Cl^- + CH_3CH_2OH \xrightarrow{Cu} ArH + N_2 + HCl + CH_3CHO$$

Пояснения по выполнению контрольной работы.

Нитросоединение получают из заданного галогенопроизводного путем алкилирования соли азотистой кислоты. Записывают для него реакции восстановления до первичного амина и схему равновесия нитро ↔ аци-форма в щелочной среде. Первичный амин R-CH₂NH₂ получают при действии заданного галогенопроизводного, взятого в избытке, на NH₃, либо при восстановлении нитрила карбоновой кислоты, полученной в задании 6. Для амина R-CH₂NH₂ записывают указанные реакции. Первичный амин с числом атомов углерода (n+1) R-CH₂CH₂NH₂ получают при замещении атома галогена в заданном соединении на группу -CN и последующем ее восстановлении. Вторичный амин RCH₂CH₂-NH-CH₂R получают алкилированием первичного амина R-CH₂CH₂NH₂ заданным галогенопроизводным. При последующем алкилировании получают третичный амин.

БИФУНКЦИОНАЛЬНЫЕ ПРОИЗВОДНЫЕ УГЛЕВОДОРОДОВ

Содержат в своем составе по одной или нескольку функциональных групп различных типов. Реакционная способность таких соединений определяется не только наличием тех или иных функциональных групп, но и их взаимным влиянием.

ГИДРОКСИКАРБОНОВЫЕ КИСЛОТЫ

Важнейшие представители – гликолевая кислота HO-CH₂-COOH молочная кислота CH₃CH(OH)COOH, яблочная кислота

 $HOOCCH(OH)CH_2COOH$ — бесцветные кристаллические вещества, хорошо растворимые в воде.

Строение функциональной группы

Молекулы всех α-гидроксикислот, кроме гликолевой кислоты, содержат

Номенклатура и классификация

По номенклатуре ИЮПАК названия гидроксикислот образуют от названий соответствующих карбоновых кислот, указывая положение гидроксигруппы в цепи цифрой. По рациональной номенклатуре их называют как α-,β- и т.д. оксипроизводные карбоновых кислот (используя тривиальные названия кислот). Также используются собственные тривиальные названия оксикислот:

Методы получения

1. α-гидроксикислоты получают из α-галогенкарбоновых кислот:

2. Циангидринный способ синтеза α-гидроксикислот

3. Пример получения β-оксикислот

$$CH_2 = CH - C \bigcirc O \xrightarrow{H_2O} CH_2 - CH_2 - C \bigcirc OH$$

Реакция присоединения протекает против правила Марковникова из-за электроноакцепторного действия карбоксильной группы.

Химические свойства

1. Кислотные свойства

Выражены сильнее, чем у карбоновых кислот за счет -I — эффекта ОНгруппы. Так, например, K_a уксусной и гликолевой (α -оксиуксусной) кислот составляют $1.8 \cdot 10^{-5}$ и $15 \cdot 10^{-5}$ соответственно.

$$R-CH-COOH$$
 \longrightarrow $R-CH-COO^- + H^+$ OH

2. Реакции по карбоксильной группе

Ионизация, образование солей, сложных эфиров, амидов, галогенангидридов — аналогично карбоновым кислотам. При этом реакции с участием ОН-группы исключаются при условии ее предварительной защиты (например, образование простого эфира):

$$R-CH-COOH$$
 \longrightarrow $R-CH-COOH$ $\xrightarrow{SOCl_2}$ $R-CH-COC1$ \longrightarrow другие производные OR' OR' галогенангидрид

После получения из галогенангидрида других функциональных производных кислот защита снимается.

3. Реакции по гидроксильной группе

Свойственны все реакции спиртов – образование простых и сложных эфиров, окисление и т.д. Карбоксильную группу при этом защищают, превращая ее в сложноэфирную –СООR.

4. Отщепление воды от β-гидроксикислот с образованием ненасыщенных кислот:

$$CH_2$$
— CH_2 — $COOH$ \xrightarrow{t} CH_2 = CH — $COOH$ OH

5. α -гидроксикислоты в растворе концентрированной серной кислоты расщепляются с выделением CO_2 и H_2O , превращаясь в альдегиды или кетоны:

- 6. Образование циклических сложных эфиров
- а) α-гидроксикислоты образуют лактиды межмолекулярные циклические сложные эфиры

б) β-гидроксикислоты образуют малоустойчивые β-лактоны:

в) χ , δ -гидроксикислоты легко образуют стабильные χ - и δ -лактоны:

ОКСОКАРБОНОВЫЕ КИСЛОТЫ

 α -Оксокислоты $\stackrel{\parallel}{O}$ - бесцветные вещества, растворимы в воде. Для них характерны все реакции карбоновых кислот (нуклеофильное замещение Ad_N -E) и карбонильных соединений (нуклеофильное присоединение Ad_N). Взаимное σ -электроноакцепторное влияние двух функциональных групп увеличивает их реакционную способность.

β-Оксокислоты образуют сложные эфиры — бесцветные ароматные жидкости, молекулы которых представляют собой смесь двух таутомерных форм — енольной и дикарбонильной. Например, этиловый эфир β-оксомасляной кислоты (ацетоуксусный эфир):

Анионы эфиров β-оксокислот содержат сопряженную систему с выровненными связями и делокализованным отрицательным зарядом.

С ионами тяжелых металлов образуют внутренние комплексы – хелаты, которые бывают окрашены.

$$H_3C$$
 OC_2H_5 OC_2H_5 OC_2H_5 OC_2H_5 OC_2H_5 OC_2H_5 OC_2H_5 OC_2H_5

Хелатные соли эфиров β-оксокислот ^{ОС2^{П5}} легко алкилируются и ацилируются, С-алкил продукты ацетоуксусного эфира являются исходными веществами для получения кетонов и карбоновых кислот:

- кетонное расщепление

- кислотное расщепление

АМИНОКИСЛОТЫ

Аминокислоты – органические бифункциональные соединения, в состав которых входят карбоксильные группы –СООН и аминогруппы -NH₂.

Первый представитель — аминоуксусная кислота H_2N - CH_2 -COOH (*глицин*) <u>Номенклатура и классификация</u>

В зависимости от взаимного расположения амино- и карбоксильной групп аминокислоты подразделяют на α -, β -, γ -, δ -, ϵ - и т. д.

$$H_2N$$
— $\overset{\alpha}{CH}$ —COOH H_2N — $\overset{\beta}{CH_2}$ — $\overset{\alpha}{CH_2}$ —COOH $\overset{\beta}{CH_3}$

2-аминопропановая киспота 3-аминопропановая киспота (α -аминопропионовая, (β -аминопропионовая) аланин)

 H_2N — $\overset{\alpha}{CH_2}$ — $\overset{\gamma}{CH_2}$ — $\overset{\delta}{CH_2}$ — $\overset{\alpha}{CH_2}$ —COOH $\overset{\beta}{CH_2}$ — $\overset{\alpha}{CH_2}$ —COOH

По характеру углеводородногозаместителя различают алифатические и ароматические аминокислоты. Приведенные выше соединения относятся к алифатическому ряду. Примером ароматической аминокислоты может служить napa-аминобензойная H_2N —СООН кислота.

По систематической номенклатуре названия аминокислот образуются из названий соответствующих карбоновых кислот прибавлением приставки амино- и указанием места расположения аминогруппы по отношению к карбоксильной группе.

Например:

Для названия по рациональной номенклатуре к тривиальному названию карбоновой кислоты добавляется приставка амино с указанием положения аминогруппы буквой греческого алфавита. Пример:

Важнейшими являются α-аминокислоты, составляющие основу пептидов и белков. Для биологически важных α-аминокислот (их всего 20) применяются тривиальные названия.

Некоторые важнейшие α -аминокислоты общей формулы $H_2N-CH-COOH$

Аминокислота	Сокращенное обозначение	-R
Глицин	Gly	-H
Аланин	Ala	-CH ₃
Фенилаланин	Phe	-CH ₂ -C ₆ H ₅
Валин	Val	-CH(CH ₃) ₂
Лейцин	Leu	-CH ₂ -CH(CH ₃) ₂
Серин	Ser	-CH ₂ OH
Триптофан	Try	CH ₂ — N H
Гистидин	His	N—————————————————————————————————————

Если в молекуле аминокислоты содержится две аминогруппы, то в ее названии используется приставка диамино, три группы NH_2 – триамино и т.д.

Пример:

$$_{NH_{2}}^{CH_{2}-CH$$

Наличие двух или трех карбоксильных групп отражается в названии суффиксом –диовая или -триовая кислота:

$$^{O}_{HO}$$
С— $^{CH_2-CH_2-CH_2-CH_2-C}_{OH}$ ОН $^{O}_{NH_2}$ 2-аминопентандиовая кислота (глутаминовая кислота)

Физические свойства

Аминокислоты — твердые кристаллические вещества с высокой $t_{\mbox{\tiny пл.}},$ при Растворимы плавлении разлагаются. В воде, водные растворы изоэлектрической точки электропроводны. Нелетучи и нерастворимы в расворителях. α-Аминокислоты обладают органических оптической активностью. Все биологически важные аминокислоты относятся к L-ряду (левовращающие).

Методы получения

- 1. Биологически важные аминокислоты могут быть получены путем гидролиза белков.
- 2. Замещение галогена на аминогруппу в соответствующих галогензамещенных кислотах:

3. Присоединение аммиака к α, β-непредельным кислотам с образованием β-аминокислот:

$$CH_2=CH-COOH + NH_3 \rightarrow H_2N-CH_2-CH_2-COOH$$

В результате электроноакцепторного действия ОН-группы присоединение происходит против правила Марковникова.

4. Циангидринный способ синтеза:

$$R-C \stackrel{O}{\longleftarrow} H \stackrel{HCN}{\longrightarrow} R-CH-CN \xrightarrow{NH_3} R-CH-CN \xrightarrow{+2 \text{ H}_2\text{O}} R-CH-CN \xrightarrow{-1} R-CH-CN \xrightarrow{NH_4^+} R-CN \xrightarrow{NH_4^+}$$

Химические свойства

1. Молекулы аминокислот существуют в виде внутренних солей, которые образуются за счет переноса протона от карбоксила к аминогруппе.

$$H_2\ddot{N}$$
— CH_2 — $C \stackrel{O}{<}_{O-H}$ \longrightarrow $H_3\dot{N}$ — CH_2 — $C \stackrel{O}{<}_{O}$ или $H_3\dot{N}$ — CH_2 — $C \stackrel{O}{<}_{O}$

В ходе процесса переноса протона от карбоксила к аминогруппе образуются диполярные ионы (старое название – цвиттер-ион).

Аминокислоты являются амфотерными соединениями:

$$H_2N-CH_2-COO^ \xrightarrow{H^+}$$
 $^+H_3N-CH_2-COO^ \xrightarrow{OH^-}$
 $^+H_3N-CH_2-COOH$

В кислом растворе под действием электрического тока аминокислота движется к катоду, в щелочной – к аноду. Значение кислотности, при котором миграции аминокислоты не наблюдается, называется изоэлектрической точкой. Она своя для каждой аминокислоты.

Для аминокислот характерны все реакции по аминогруппе и по карбоксильной группе, например:

2. Реакции по карбоксильной группе

$$\begin{array}{c|c} & & & & & & & & \\ & & & & & & & \\ R-CH-C & O & & & & & \\ \hline R-CH-C & O & & & & \\ & & & & & & \\ NH_2 & & & & & \\ \hline & & & & & \\ R'-OH & & & & \\ & & & & & \\ R'-OH & & & & \\ & & & & & \\ & & & & & \\ R-CH-C & O & & \\ & & & & \\ NH_2 & & & \\ \end{array}$$

3. Реакции по аминогруппе

- 4. Кроме того, возможно взаимодействие амино- и карбоксильной групп как внутри одной молекулы (внутримолекулярная реакция), так и групп, принадлежащих разным молекулам (межмолекулярная реакция).
 - а) а-аминокислоты образуют при нагревании циклические амиды -

дикетопиперазины:
$$R-CH-C \bigcirc O \\ OH -2 H_2O \bigcirc N \\ R \\ N \\ R$$

<u>б</u>) <u>β-аминокислоты</u> - α , β -непредельные кислоты:

$$NH_2$$
- CH_2 - $COOH \rightarrow CH_2$ = CH - $COOH + NH_3$

в) Практическое значение имеет внутримолекулярное взаимодействие функциональных групп <u>у-аминокислот</u> с образованием циклических амидов — <u>лактамов</u>. В результате внутримолекулярного отщепления воды в є-аминокапроновой кислоте образуется є-капролактам (полупродукт для t^{0} , t^{0} , t

5. Межмолекулярное отщепление воды от молекул α-аминокислот приводит к образованию пептидов:

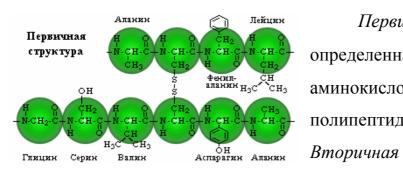
$$H_2$$
N-CH $_2$ С-ОН + H-N-CH-COOH $\xrightarrow{-H_2O}$ $\xrightarrow{-H_2O}$

Фрагменты молекул аминокислот, образующие пептидную цепь, называются аминокислотными звеньями, а связь CO–NH - *пептидной* связью.

Пояснения по выполнению контрольной работы.

 α -гидроксикарбоновую кислоту с числом атомов углерода (n+1) RCH₂CH₂(OH)COOH получают путем замещения атома водорода у α -углеродного атома в кислоте RCH₂CH₂COOH (задание 8) на галоген в

фосфора присутствии красного И последующего гидролиза αгалогенкарбоновой кислоты. Записывают уравнение образования лактида полученной кислоты. α-Аминокарбоновую кислоту с числом атомов углерода (n+1) RCH₂CH₂(NH₂)COOH получают аналогично, но проводят на 2-й стадии синтеза не гидролиз, a действуют избытком аммиака. Записывают проекционные формулы L- и D-энантиомеров этой кислоты. Для аминокислоты также записывают реакции взаимодействия с галогенангидридом карбоновой кислоты RCOOH, полученной в задании 6, и со спиртом R-CH₂OH, полученным в задании 1а.


БЕЛКИ

Белки (полипептиды) - биополимеры, построенные из остатков α - аминокислот, соединенных пептидными (амидными) связями.

Формально образование белковой макромолекулы можно представить как реакцию поликонденсации α-аминокислот :

Молекулярные массы различных белков (полипептидов) составляют от 10000 до нескольких миллионов, а число аминокислотных звеньев в цепи может достигать 8000. Макромолекулы белков имеют стереорегулярное строение. В состав белков организма человека входят остатки 20 α-аминокислот. Белки в природе выполняют ряд важных функций, таких как ферментативная (катализаторы биохимических реакций), защитная (иммунные антитела) и др.

Выделяют 4 уровня структурной организации белков.

Первичная структура - определенная последовательность α - аминокислотных остатков в полипептидной цепи.

структура

конформация полипептидной цепи, закрепленная водородными связями между группами N-H и C=O. Существуют 2 модели вторичной структуры - α-спираль и β-структура, образованные за счет межцепочечных водородных связей между соседними участками полипептидной цепи. Та или иная модель реализуется в зависимости от типа аминокислотных звеньев на данном участке макромолекулы.

Третичная структура

Третичная структура - форма закрученной спирали в пространстве. Различают фибриллярные (нитевидные) или глобулярные (шарообразные) белки.

Четвертичная структура - агрегаты нескольких белковых

макромолекул, образованные за счет взаимодействия разных полипептидных цепей и ориентированные в пространстве. Могут включать небелковые фрагменты (простетическая группа белка).

Вторичная

структура

УГЛЕВОДЫ

Углеводы (сахара) - органические вещества, состав которых выражается формулой $C_x(H_2O)_v$, где x и y>3.

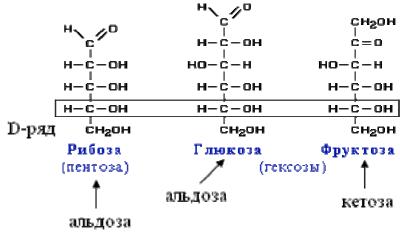
Углеводы по массе составляют основную часть органического вещества на Земле (до 80% растительной биомассы). Образуются в зеленых листьях

растений в процессе фотосинтеза из углекислого газа и воды. Фотосинтез можно рассматривать как процесс превращения солнечной энергии в энергию химических связей при восстановлении CO_2 до углеводов. Эта энергия освобождается в животных организмах в результате метаболизма углеводов, который заключается, с химической точки зрения, в их окислении.

фотосинтез
$$xCO_2 + yH_2O + \frac{\text{солнечная}}{\text{энергия}} \to C_x(H_2O)_y + xO_2$$
 углеводы МЕТАБОЛИЗМ $C_x(H_2O)_y + xO_2 \to xCO_2 + yH_2O + \text{энергия}$ углеводы

Углеводы делятся на простые - моносахариды (монозы) и сложные - дисахариды (биозы) и полисахариды (гликаны).

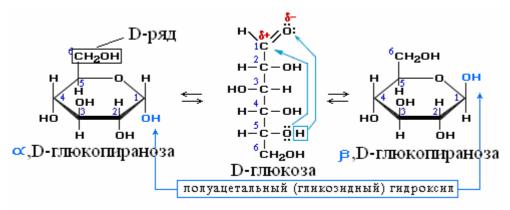
Сложные углеводы гидролизуются до моносахаридов.


НЕКОТОРЫЕ ВАЖНЕЙШИЕ УГЛЕВОДЫ					
Простые (негидролизующиеся)	Сложные (гидролизующиеся)				
Моносахариды	Дисахариды	Полисахариды			
глюкоза $C_6H_{12}O_6$ фруктоза $C_6H_{12}O_6$ рибоза $C_5H_{10}O_5$	сахароза $C_{12}H_{22}O_{11}$ мальтоза $C_{12}H_{22}O_{11}$	крахмал $(C_6H_{10}O_5)_n$ целлюлоза $(C_6H_{10}O_5)_n$			

Моносахариды (монозы)

Моносахариды – гетерофункциональные соединения, в состав их молекул

входит одна карбонильная и несколько гидроксильных групп.


В природе наиболее распространены моносахариды, в молекулах которых содержится пять (пентозы) или

шесть (гексозы) углеродных атомов. В зависимости от принадлежности моноз к альдегидоспиртам или кето-спиртам различают альдозы и кетозы. Так, рибоза является альдопентозой, глюкоза — альдогексозой, а фруктоза — кетогексозой.

Все природные углеводы относятся к D-ряду – правовращающие оптические изомеры.

результате взаимодействия карбонильной группы с одной гидроксильных моносахариды могут существовать в двух таутомерных формах: линейной (оксо-форме) и циклической (полуацетальной). В кристаллическом состоянии моносахариды существуют в циклической форме, в растворах циклическая и линейная (открытая) формы находятся в равновесии друг с другом. Так, соотношение линейной и циклической форм для глюкозы 36% и 64% соответственно. При ЭТОМ В зависимости OT расположения полуацетального гидроксила C¹-OH в циклической форме углевода различают α- и β-пространственные изомеры.

Циклизация моносахарида может сопровождаться как образованием шестичленного (пиранозного), так и пятичленного (фуранозного) цикла.

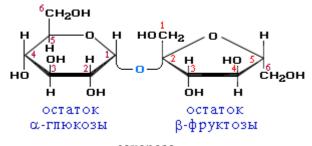
Практически все углеводы обладают оптической активностью, т.е. имеют один, два или более асимметрических атома углерода. Моносахариды относят к D- (правовращающие) или L- (левовращающие) ряду по характеру расположения наиболее удаленного от карбонильной группы фрагмента H-C-OH в линейной форме углевода (справа и слева, соответственно) или же по расположению CH₂OH- групп в циклической форме (сверху или снизу, соответственно).

Химические свойства

Обусловлены наличием в молекуле функциональных групп двух видов. Например, глюкоза как многоатомный спирт образует простые и сложные эфиры, комплексное соединение с гидроксидом меди (II), как альдегид она окисляется аммиачным раствором оксида серебра в глюконовую кислоту и восстанавливается водородом в шестиатомный спирт - сорбит. В циклической форме глюкоза способна к нуклеофильному замещению полуацетального гидроксила на группу -OR (образование гликозидов, олиго- и полисахаридов). Практическое значение имеет реакция брожения - расщепление глюкозы под действием различных микроорганизмов:

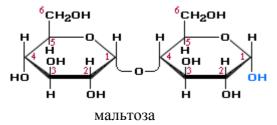
а) спиртовое брожение

$$C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$$


б) молочнокислое брожение

$$C_6H_{12}O_6 \rightarrow 2CH_3$$
-CH(OH)-COOH (молочная кислота)

Аналогично ведут себя в химических реакциях и другие моносахариды.


Дисахариды

Дисахариды - это углеводы, молекулы которых состоят из двух остатков моносахаридов, соединенных друг с другом за счет взаимодействия гидроксильных групп. При взаимодействии двух полуацетальных ОН-групп (1-2 или 1-4 взаимодействие) образуются невосстанавливающие дисахариды. Они не дают в растворе реакцию серебряного зеркала, т.к. не способны образовывать открытую (линейную) форму. Например, молекула сахарозы состоит из остатков глюкозы и фруктозы, соединенных друг с другом за счет взаимодействия полуацетальных гидроксилов:

сахароза 1-α,D-глюкопиранозил-2-β,D-фруктофураноза При взаимодействии полуацетальной и любой гидроксильной групп (чаще $-1,4^{\beta}$ -дисахариды) образуются восстанавливающие

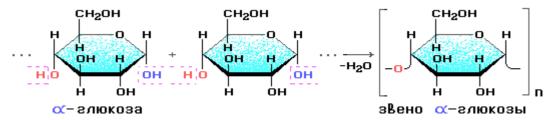
дисахариды, например, мальтоза:

1-α, D-глюкопиранозил-4-α, D-глюкопираноза

В молекулах таких дисахаридов имеется свободный полуацетальный гидроксил, поэтому в водных растворах существует равновесие между

открытой и циклической формами молекул.

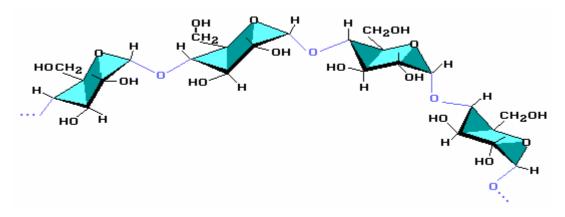
Для дисахаридов характерна реакция гидролиза, в результате которой образуются две молекулы моносахаридов:


уются две молекулы моносахаридов.
$$C_{12}H_{22}O_{11} + H_2O \xrightarrow{H^+ \text{ (фермент)}} 2C_6H_{12}O_6$$

Полисахариды

Полисахариды - это углеводы, макромолекулы которых состоят из фрагментов моносахаридов. Из фрагментов одного моносахарида состоят гомополисахариды (гомогликаны), из фрагментов разных моносахаридов – гетерополисахариды (гетерогликаны).

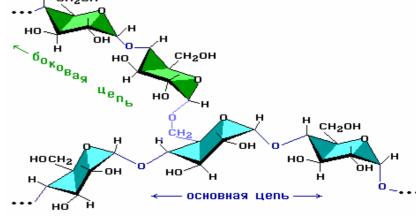
Крахмал


Крахмалом называется смесь двух полисахаридов, построенных из остатков α-глюкозы в циклической форме.

В его состав входят:

- амилоза (внутренняя часть крахмального зерна) 10-20%
- амилопектин (оболочка крахмального зерна) 80-90%

Цепь *амилозы* включает 200 - 1000 остатков α-глюкозы (средняя молекулярная масса 160000) и имеет неразветвленное строение:

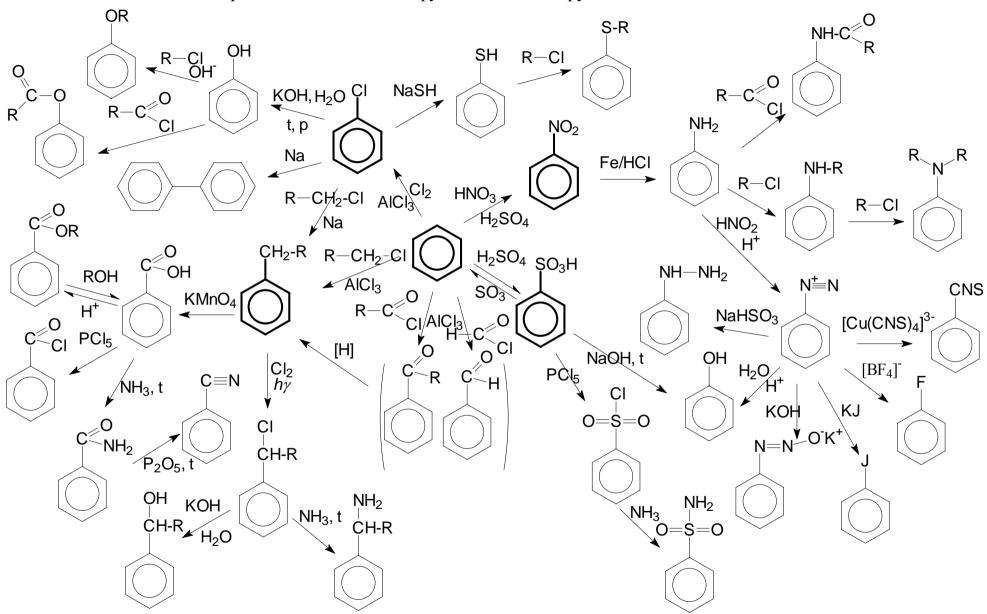

Макромолекула амилозы представляет собой спираль, каждый виток которой состоит из 6 звеньев α-глюкозы.

При взаимодействии амилозы с йодом в водном растворе молекулы йода встраиваются во внутренний канал спирали, образуя так называемое *соединение* включения, или клатрат. Соединение амилозы и йода имеет характерный синий цвет. Данная реакция используется в аналитических целях для

обнаружения как крахмала, так и йода (йодкрахмальная проба).

Амилопектин состоит из разветвленных макромолекул, молекулярная масса которых около 1 - 6 млн.

Подобно амилопектину построен гликоген (животный крахмал).


Целлюлоза

Целлюлоза (клетчатка) обладает большой механической прочностью и играет роль опорного материала растений, образуя стенку растительных клеток. Используется в производстве волокон, бумаги, взрывчатых веществ. В большом количестве целлюлоза содержится в древесине (\approx 50%) и хлопке (около 100%).

Цепи целлюлозы построены из остатков β-глюкозы и имеют линейное строение.

Молекулярная масса целлюлозы - от 400 000 до 2 млн.

Некоторые способы введения функциональных групп в бензольное кольцо

Литература

- 1. Петров А. А., Бальян Х. В., Трощенко А. Т. Органическая химия: Учебник для вузов / Под ред. Петрова А. А. — 4-е изд., перераб. и доп. — М.: Высш. школа, 1981.
- 2. Грандберг И.И. Органическая химия: Учеб. для студ. вузов, обучающихся по агроном, спец. 4-е изд., перераб. и доп. М.: Дрофа, 2001. —672 с
 - 3. Шабаров Ю.С. Органическая химия. М.: «Химия». 2000. Изд. 3. 848 с.
 - 4. Нейланд О.Я. Органическая химия. М.: «Высшая школа». 1990, 751с.
- 5. Несмеянов А.Н., Несмеянов Н.А. Начала органической химии. М.: «Химия». 1974. Изд. 2. Кн. 1. 624 с. и Кн. 2. 744 с.
- 6. Березин Б.Д., Березин Д.Б. Курс современной органической химии. М.: «Высшая школа». 2003. 768 с.
 - 7. Моррисон Р., Бойд Р. Органическая химия. М.: «Мир». 1974, 1132 с.
- 8. Днепровский А.С., Темникова Т.И. Теоретические основы органической химии. М: «Химия». 1979. 520 с.
- 9. Гнедин Б.Г., Петрова Р.А., Голубчиков О.А. Синтезы органических соединений. Учебн. пособие для химических вузов / под ред. О.А. Голубчикова Изд. 3, испр. СПб: НИИ химии СПбГУ, 2002. 178 с.
- 10.Д.Б. Березин, О.В. Шухто Строение и свойства углеводородов: Метод. указания по органической химии для студентов заочного отделения Иван. гос. хим.-технол. ун-т. Иваново, 2008 79 с.
- 11.<u>http://cnit.ssau.ru/organics/index.htm</u> Электронный учебник, под ред. Г.И. Дерябиной, А.В. Соловова

Оглавление

	Контрольная работа №2 Вопросы	3
1.	Галогенопроизводные углеводородов	4
	Строение функциональной группы	4
	Номенклатура, классификация, физические свойства	5
	Методы получения галогенопроизводных у/в	6
	Химические свойства	7
2.	Серусодержащие органические соединения	13
	Методы получения	16
	Химические свойства серусодержащих органических соединений	18
3.	Кислородсодержащие органические соединения	21
3.1.	Гидроксилпроизводные углеводородов – номенклатура и классификация	21
	Строение гидроксильной группы в молекулах спиртов и фенолов	23
	Методы получения спиртов и фенолов	26
	Химические свойства спиртов	28
	Особенности химических свойств двух- и трехатомных спиртов	33
	Реакционная способность фенолов	35
3.2.	Простые эфиры	37
	Пояснения по выполнению контрольной работы	39
3.3.	Карбонильные соединения (альдегиды и кетоны)	40
	Физические свойства, методы получения альдегидов и кетонов	41
	Химические свойства альдегидов и кетонов	43
	Пояснения по выполнению контрольной работы	47
3.4.	Карбоновые кислоты	48
	Физические свойства, строение функциональной группы в карб. кислотах	49
	Методы получения карбоновых кислот	50
	Химические свойства карбоновых кислот	51
	Жиры	54
	Пояснения по выполнению контрольной работы	56
4.	Азотсодержащие органические соединения	57
4.1.	Нитросоединения	57
	Физические свойства, получение нитросоединений	58
	Химические свойства нитросоединений	59
4.2.	Амины. Строение молекул	61
	Методы получения, свойства аминов	63
4.3.	Диазосоединения	68
	Пояснения по выполнению контрольной работы	70
5.	Бифункциональные производные углеводородов	71
5.1	Гидроксикарбоновые кислоты	71
5.2.	Оксокарбоновые кислоты	74
5.3.	Аминокислоты	76
	Пояснения по выполнению контрольной работы	80
5.4.	Белки	81
5.5.	Углеводы	82
	Моносахариды	83
	Дисахариды	85
	Полисахариды	86
5.6.	Некоторые способы введения функциональных групп в бензольное кольцо	89
	Литература	90
	Оглавление	91

Составители:

Шухто Ольга Владимировна Березин Дмитрий Борисович Сырбу Сергей Александрович

СТРОЕНИЕ И СВОЙСТВА ФУНКЦИОНАЛЬНЫХ ПРОИЗВОДНЫХ УГЛЕВОДОРОДОВ

Учебное пособие

Редактор В.Л. Родичева

Подписано в печать . .2009. Формат 60х84 1/16. Бумага писчая. Усл.п.л. Уч.-изд.л. Тираж 200 экз. Заказ _____
ГОУВПО "Ивановский государственный химико-технологический университет"
153000, г. Иваново, пр. Ф. Энгельса, 7.

Отпечатано на полиграфическом оборудовании кафедры экономики и финансов ГОУ ВПО «ИГХТУ»