Федеральное агентство по образованию Российской Федерации Государственное образовательное учреждение высшего профессионального образования Ивановский государственный химико-технологический университет

МЕТОДЫ МАТЕМАТИЧЕСКОЙ ФИЗИКИ Интегральные уравнения

Методические указания

Составитель: Г.А. Зуева

Составитель: Г.А. Зуева

УДК 613.19

Методы математической физики. Интегральные уравнения: Методические указания / Иван. гос. хим.-технол. ун-т; Сост. Г.А. Зуева. - Иваново, 2006.-32 с.

Методические указания содержат изложенный в краткой форме теоретический материал, относящийся к уравнениям математической физики (интегральным уравнениям). Приведены контрольные задачи и упражнения с ответами, представлен разбор решения типовых задач.

Методические указания рекомендуются студентам, изучающим методы математической физики, а также аспирантам высших технических учебных заведений.

Рецензент

доктор химических наук, профессор В.В. Рыбкин

(ГОУ ВПО «Ивановский государственный химико-технологический университет»)

Вопросы и задачи для самопроверки

- 1. Что такое неопределенный интеграл?
- 2. Напишите формулу интегрирования по частям.
- 3. Напишите формулу Ньютона-Лейбница.
- 4. В чем состоит геометрический смысл определенного интеграла?
- 5. Чему равна производная определенного интеграла по переменному верхнему пределу?
- 6. Что такое несобственный интеграл?
- 7. Как определяются пространства R^2 , R^3 , R^n ?
- 8. Найдите интеграл $\int_{0.0}^{1.1} x^2 y^2 dx dy$.
- 9. Найдите общее решение для уравнения
 - 1) $y''-6y'+9y=e^{3x}$;
 - 2) $y''+3'+2y=\cos 2x+2\sin 2x$.
- 10. Найдите интегралы вида:
 - 1) $\int x^n dx$; 2) $\int x \cos(nx) dx$; 3) $\int x \sin(nx) dx$;
 - $4) \int \cos^2(nx) dx; \quad 5) \int \sin^2(nx) dx; \quad 6) \int \cos(nx) \sin(mx) dx;$

те же интегралы найдите в пределах

- 8) от 0 до π , 9) от - π до π , 10) от 0 до 1. 11) найдите $\int_{0}^{l} cos(\pi n/l) dx$, n=1,2,...
- 11. Что такое скалярное произведение? Какими свойствами оно обладает? Какие векторы называются ортогональными?
- 12. Какой может быть область сходимости степенного ряда?
- 13. Найдите область сходимости ряда

$$\sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n^2 + 1}}.$$

- 14. Сформулируйте задачу Коши для дифференциального уравнения первого порядка.
- 15. Сформулируйте теорему единственности решения задачи Коши для дифференциального уравнения первого порядка.

3

1. Интегральные уравнения. Основные понятия и определения. Классификация уравнений

Определение: *Интегральными уравнениями* называются уравнения, содержащие неизвестную функцию под знаком интеграла.

Многие задачи математической физики сводятся к линейным интегральным уравнениям.

Определение: Интегральное уравнение называется *линейным*, если в него неизвестная функция входит линейно.

Пример линейного уравнения

$$\varphi(x) - \int_{0}^{1} e^{xy} \varphi(y) dy = x - \frac{e^{x}}{x}, \ 0 \le x \le 1.$$

Пример нелинейного уравнения

$$\varphi(x) - \int_{0}^{1} \frac{xy\varphi(y)}{1 + \varphi^{2}(y)} dy = f(x), \ 0 \le x \le 1.$$

Решить интегральное уравнение — значит найти такую функцию, которая обращает данное уравнение в верное тождество.

Интегральные уравнения подразделяются на *уравнения первого рода* и *уравнения второго рода*. В уравнения первого рода неизвестная функция входит только под знаком интеграла. В уравнения второго неизвестная функция входит как под знаком интеграла, так и вне интеграла.

Уравнения первого и второго рода с постоянными пределами интегрирования называются *уравнениями Фредгольма*, а уравнения с переменным верхним пределом называются *уравнениями Вольтерра*.

Таким образом, линейное интегральное уравнение Фредгольма первого рода имеет вид:

$$\int_{a}^{b} K(x, y)\varphi(y)dy = f(x), \ a \le x \le b.$$

Линейное интегральное уравнение Фредгольма второго рода имеет вид

$$\varphi(x) - \int_{a}^{b} K(x, y)\varphi(y)dy = f(x), \ a \le x \le b.$$

Линейное интегральное уравнение Вольтерра первого рода имеет вид

$$\int_{a}^{x} K(x, y)\varphi(y)dy = f(x), \ a \le x.$$

Линейное интегральное уравнение Вольтерра второго рода имеет вид

$$\varphi(x) - \int_{a}^{x} K(x, y)\varphi(y)dy = f(x), \ a \le x.$$

Злесь

 $\varphi(x)$ – неизвестная искомая функция;

f(x) — заданная непрерывная функция, называемая *свободным членом* интегрального уравнения;

K(x,y) — заданная непрерывная функция, называемая *ядром* интегрального уравнения.

Уравнения второго рода иногда записывают с параметром λ так:

$$\varphi(x) - \lambda \int_{a}^{b} K(x, y)\varphi(y)dy = f(x), \ a \le x \le b.$$
 (1)

или

$$\varphi(x) - \lambda \int_{a}^{x} K(x, y) \varphi(y) dy = f(x), \ a \le x.$$
 (2)

Тогда уравнения (1) или (2) представляют собой не одно уравнение, а семейство уравнений, зависящее от числового параметра λ .

Если f(x) = 0, то интегральное уравнение называется *однородным*, в противном случае оно называется *неоднородным*.

Уравнения Вольтерра более просты, чем уравнения Фредгольма; уравнения второго рода более просты, чем уравнения первого рода. Уравнение Вольтерра можно при некоторых ограничениях рассматривать как частный случай уравнения Фредгольма.

2. Метод последовательных приближений решения интегральных уравнений

2.1. Построение решения уравнения Фредгольма второго рода при малых значениях параметра методом последовательных приближений.

Будем рассматривать интегральное уравнение Фредгольма второго рода

$$\varphi(x) - \lambda \int_{a}^{b} K(x, y)\varphi(y)dy = f(x), \ a \le x \le b,$$
(3)

где ядро K(x,y) и правая часть f(x) — заданные непрерывные функции переменных $x, y, \varphi(x)$ - искомая функция, λ - параметр.

В случае, когда параметр λ мал, т.е. удовлетворяет условию

$$\left|\lambda\right| < \frac{1}{M}$$

где M – положительное число, такое, что

$$\left(\int\limits_{a}^{b}\int\limits_{a}^{b}\left|K(x,y)\right|^{2}dxdy\right)^{\frac{1}{2}}\leq M\quad\text{или}\quad\int\limits_{a}^{b}\left|K(x,y)\right|dy\leq M\,,\;a\leq x\leq b\,,$$

решение $\varphi(x)$ уравнения (3) существует и его можно построить *методом по*следовательных приближений.

Суть метода: функция $\varphi(x)$ ищется в виде предела последовательности $\varphi_0(x) = f(x),$

$$\varphi_n(x) = f(x) + \lambda \int_a^b K(x, y) \varphi_{n-1}(y) dy, \ n = 1, 2, \dots$$
(4)

T.e.

$$\varphi(x) = \lim_{n \to \infty} \varphi_n(x)$$

и других решений уравнение (3) не имеет.

Методом последовательных приближений найти решение уравнения Фредгольма 2-го рода, предварительно убедившись, что выполнено условие

$$\left|\lambda\right| < \frac{1}{M} = \left(\int_{a}^{b} \int_{a}^{b} \left|K(x, y)\right|^{2} dx dy\right)^{-\frac{1}{2}}$$

$$(5)$$

1.
$$\varphi(x) - \int_{a}^{b} xy \varphi(y) dy = 2x$$
.

$$\frac{\text{Решение.}}{\left(\iint\limits_{a}^{b} |K(x,y)|^{2} dx dy\right)} = M^{2} = \iint\limits_{a}^{b} x^{2} y^{2} dx dy = 1/9.$$

Значит M=1/3, $|\lambda|=1<\frac{1}{1/3}=3$. Следовательно, условие (5) выполнено.

Построим последовательность приближенных решений (4) $\varphi_0(x) = 2x$

$$\varphi_n(x) = 2x + 1 \cdot \int_a^b xy \varphi_{n-1}(y) dy, \ n = 1, 2, ...$$

т.е.

$$\varphi_1(x) = 2x + 1 \cdot \int_a^b xy 2y dy = 2x + 2x \frac{1}{3};$$

$$\varphi_2(x) = 2x + 1 \cdot \int_a^b xy(2y + y\frac{2}{3})dy = 2x + 2x(\frac{1}{3} + \frac{1}{9});$$

$$\varphi_2(x) = 2x + 1 \cdot \int_a^b xy(2y + y\frac{2}{3})dy = 2x + 2x(\frac{1}{3} + \frac{1}{9});$$

$$\varphi_3(x) = 2x + 1 \cdot \int_a^b xy(2y + y(\frac{2}{3} + \frac{2}{9}))dy = 2x + 2x(\frac{1}{3} + \frac{1}{9} + \frac{1}{27});$$

$$\varphi_n(x) = 2x + 2x(\frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \dots + \frac{1}{3^{n-1}});$$

$$\varphi(x) = \lim_{n \to \infty} \varphi_n(x)$$
.

Т.к. сумма убывающей геометрической прогрессии

$$\frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \dots = \frac{b_1}{1 - q} = \frac{1/3}{1 - 1/3} = \frac{1}{2}$$
, To

$$\varphi(x) = 2x + 2x \cdot \frac{1}{2} = 3x.$$

2.
$$\varphi(x) + \frac{1}{\pi} \int_{0}^{\pi} \cos^2 y \varphi(y) dy = 1.$$

OTBET: $\varphi(x) = \frac{2}{3}$.

3.
$$y(x) - \frac{1}{2\pi} \int_{0}^{\pi} \sin x \, y(t) t dt = 2\sin x.$$

Other: $y(x) = 4\sin x$.

4.
$$y(x) - \pi \int_{0}^{1} (1-x)\sin 2\pi t \ y(t)dt = \frac{1}{2}(1-x).$$

OTBET: v(x) = 1 - x.

$$5. \ \varphi(x) - \frac{1}{2} \int_{0}^{1} \varphi(y) dy = \sin \pi x.$$

Ответ: $\varphi(x) = \sin \pi x + \frac{2}{\pi}$.

2.2. Построение решения уравнения Вольтерра второго рода методом последовательных приближений.

Будем рассматривать интегральное уравнение Вольтерра второго рода

$$\varphi(x) - \lambda \int_{a}^{x} K(x, y) \varphi(y) dy = f(x), \ a \le x.$$
 (6)

Mетодом последовательных приближений функция $\phi(x)$ ищется в виде предела последовательности

$$\varphi_0(x) = f(x),$$

$$\varphi_n(x) = f(x) + \lambda \int_a^x K(x, y) \varphi_{n-1}(y) dy, \ n = 1, 2, ...,$$
(7)

т.е.

$$\varphi(x) = \lim_{n \to \infty} \varphi_n(x). \tag{8}$$

Интегральное уравнение Вольтерра (6) при требовании непрерывности его ядра K(x, y)и правой части f(x) имеет единственное решение (8) для каждого конечного значения параметра λ .

Этим существенно отличается интегральное уравнение Вольтерра второго рода от интегрального уравнения Фредгольма 2-го рода, которое, как будет по-казано ниже, не для каждого λ может иметь решение, а при некоторых λ , оно может иметь даже несколько решений.

Обычно полагают $\varphi_0(x) = f(x)$, однако это вовсе не обязательно: удачный выбор ненулевого приближения часто позволяет ускорить сходимость последовательности $\varphi_n(x)$ к точному решению.

Методом последовательных приближений найти решение уравнения Вольтерра 2-го рода:

6.
$$\varphi(x) = 1 - \int_{0}^{x} (x - y)\varphi(y)dy$$
.

<u>Решение.</u> Положим

$$\overline{\varphi_0(x)} = 1.$$

Тогда

$$\begin{split} \varphi_1(x) &= 1 - \int_0^x (x - y) dy = 1 - \frac{x^2}{2} = 1 - \frac{x^2}{2!}, \\ \varphi_2(x) &= 1 - \int_0^x (x - y) (1 - \frac{y^2}{2!}) dy = 1 - \frac{x^2}{2} + \frac{x^4}{24} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!}, \\ \varphi_3(x) &= 1 - \int_0^x (x - y) (1 - \frac{y^2}{2!} + \frac{y^4}{4!}) dy = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!}. \end{split}$$

. . .

Для *п*-ого приближения

$$\varphi_n(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + \dots + (-1)^n \frac{x^{2n}}{(2n)!} = \sum_{k=0}^n (-1)^k \frac{x^{2k}}{(2k)!}.$$

Тогда решение уравнения

$$\varphi(x) = \lim_{n \to \infty} \varphi_n(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} = \cos x.$$

 Π р о в е р к а: Подставим $\varphi(x) = \cos x$ в исходное уравнение

$$\varphi(x) = 1 - \int_{0}^{x} (x - y)\varphi(y)dy.$$

Получим

$$\cos x = 1 - \int_0^x x \cos x dy + \int_0^x y \cos x dy. \tag{9}$$

Находим первый интеграл

$$\int_{0}^{x} x \cos x dy = x \sin y \Big|_{0}^{x} = x \sin x.$$
 (10)

Находим второй интеграл

$$\int_{0}^{x} y \cos x dy = \begin{vmatrix} u = x \\ dv = \cos y dy \\ v = \sin y \\ du = dy \end{vmatrix} = y \sin y \begin{vmatrix} x \\ 0 = x \sin y + \cos x - 1. \end{cases}$$
(11)

Подставим (10), (11) в (9) $\cos x = 1 - x \sin x + x \sin x + \cos - 1$, $\cos x = \cos x$ - верно.

Ответ: $\varphi(x) = \cos x$.

7.
$$\varphi(x) = 1 + \int_{0}^{x} \varphi(y) dy$$
.

Ответ: $\varphi(x) = \exp x$.

8.
$$y(x) = 1 - x^2 + \int_0^x xy(t)dt$$
.
a) $y_0(x) = 1 - x^2$; **6)** $y_0(x) = 1$.

Ответ: y(x) = 1.

9.
$$y(x) = x^2 + x - \int_0^x y(t)dt$$
.

a)
$$y_0(x) = 1;$$

a)
$$y_0(x) = 1;$$
 6) $y_0(x) = \frac{x^2}{2} + x.$

Ответ: v(x) = x.

10.
$$\varphi(x) = 1 + \int_{0}^{x} y \varphi(y) dy$$
, $\varphi_0(x) = 1$.

Ответ: $\varphi(x) = \exp(x^2/2)$.

11.
$$\varphi(x) = x - \int_{0}^{x} (x - y)\varphi(y)dy$$
, $\varphi_{0}(x) = 0$.

Otbet: $\varphi(x) = \sin x$.

12.
$$\varphi(x) = 1 - \int_{0}^{x} (x - y)\varphi(y)dy$$
, $\varphi_{0}(x) = 0$.

Otbet: $\varphi(x) = ch x$.

13.
$$\varphi(x) = 2^x + \int_0^x 2^{x-y} \varphi(y) dy$$
, $\varphi_0(x) = 0$.

Ответ: $\varphi(x) = (2e)^x$.

3. Интегральные уравнения с вырожденными ядрами

3.1 Решение уравнений Фредгольма 2-го рода с вырожденным ядром.

Ядро K(x,y) называется вырожденным, если оно имеет вид

$$K(x,y) = \sum_{i=1}^{n} p_i(x)q_i(y).$$
 (12)

Соответствующее интегральное уравнение (1)

$$\varphi(x) - \lambda \int_{a}^{b} \left(\sum_{i=1}^{n} p_i(x) q_i(y) \right) \varphi(y) dy = f(x)$$
(13)

решается путем сведения к системе линейных алгебраических уравнений следующим образом.

Перепишем уравнение (13) в виде

$$\varphi(x) - \lambda \sum_{i=1}^{n} c_i p_i(x) = f(x), \tag{14}$$

где неизвестные c_i определяются через искомое решение $\varphi(x)$ равенствами

$$c_{i} = \int_{a}^{b} q_{i}(y)\varphi(y)dy, \quad i = 1, 2, ..., n$$
(15)

Умножая тождество ((14) последовательно на $q_i(x)$, i = 1, 2..., n, и далее интегрируя обе части на отрезке [a,b], с учетом (15) получим для неизвестных чисел c_i следующую систему линейных алгебраических уравнений:

$$c_{i} - \lambda \sum_{j=1}^{n} \left(\int_{a}^{b} q_{i}(x) p_{j}(x) dx \right) c_{j} = \int_{a}^{b} q_{i}(x) f(x) dx, i = 1, 2, ..., n.$$
 (16)

Введем обозначения

$$\alpha_{ij} = \int_{a}^{b} q_i(x) p_j(x) dx, \qquad (17)$$

$$\gamma_i = \int_a^b q_i(x)f(x)dx. \tag{18}$$

Тогда система (16) запишется в виде

$$c_i - \lambda \sum_{j=1}^n \alpha_{ij} c_j = \gamma_i, \quad i = 1, 2, ..., n.$$
 (19)

Если c_1, c_2, \ldots, c_n – какое-нибудь решение системы (19), то в соответствии с (14) функция

$$\varphi(x) = f(x) + \lambda \sum_{i=1}^{n} c_i p_i(x)$$
(20)

будет решением исходного интегрального уравнения (13). Если же система (19) несовместна, то и интегральное уравнение не имеет решения.

Этот метод применим, конечно, и в том частном случае, когда уравнение (13) однородное, т.е. f(x) = 0.

Найти все решения или установить неразрешимость заданных уравнений Фредгольма 2-го рода с вырожденным ядром:

14.
$$\varphi(x) - \int_{-\pi}^{\pi} \left(\frac{1}{\pi}\sin x \sin y + y\right) \varphi(y) dy = \sin 2x$$
.

Решение:

Ядро $K(x, y) = \frac{1}{\pi} \sin x \sin y + y$ вырожденное, $\lambda = 1$. Полагая

$$p_1(x) = \frac{1}{\pi} \sin x,$$
 $p_2(x) = 1,$

 $q_1(y) = \sin y \,, \qquad q_2(y) = y \,,$

по формулам (17), (18) вычисляем

$$\alpha_{11} = \int_{-\pi}^{\pi} \frac{1}{\pi} \sin^2 x \, dx = 1,$$
 $\alpha_{12} = \int_{-\pi}^{\pi} \sin x \, dx = 0,$

$$\alpha_{21} = \int_{-\pi}^{\pi} \frac{1}{\pi} x \sin x \, dx = 2 \,, \qquad \alpha_{22} = \int_{-\pi}^{\pi} x \, dx = 0 \,,$$

$$\gamma_1 = \int_{-\pi}^{\pi} \sin x \cdot \sin 2x \, dx = 0 \,, \qquad \gamma_2 = \int_{-\pi}^{\pi} x \cdot \sin 2x \, dx = -\pi \,.$$

Система (19) принимает вид

$$c_1 \cdot 0 + c_2 \cdot 0 = 0$$
,

$$c_1 \cdot (-2) + c_2 \cdot 1 = -\pi$$
.

Ее общее решение: $c_1 = C, c_2 = -\pi + 2C$, где C — произвольная постоянная. Следовательно, любая функция вида

$$\varphi(x) = \sin 2x + \frac{C}{\pi} \sin x - \pi + 2C = \sin 2x + C(\frac{1}{\pi} \sin x + 2) - \pi$$

есть решение заданного уравнения и других решений это уравнение не имеет.

15. Решить уравнение

$$y(x) - 2\int_{0}^{1} \sqrt{xt} y(t) dt = x.$$

Решение:

Ядро $K(x,t) = \sqrt{x}\sqrt{t}$ вырожденное, $\lambda = 2$. Полагая

$$p_1(x) = p(x) = \sqrt{x}, \quad q_1(t) = q(x) = \sqrt{t},$$

решение ищем в виде

$$y(x) = f(x) + c p$$
или $y(x) = x + c\sqrt{x}$.

Система редуцируется к уравнению

$$c-2\alpha c=\gamma$$
,

гле

$$\alpha = \int_{a}^{b} q(x)p(x)dx = \int_{0}^{1} \sqrt{x}\sqrt{x}dx = \frac{1}{2},$$

$$\gamma = \int_{a}^{b} q(x)f(x)dx = \int_{0}^{1} \sqrt{x}xdx = \frac{2}{5}.$$

Тогда получаем уравнение

$$c-c=\frac{2}{5}.$$

Последнее уравнение не имеет решения относительно c, следовательно, исходное интегральное уравнение также не имеет решения.

16.
$$\varphi(x) - \frac{1}{\pi} \int_{0}^{2\pi} \cos x \sin y \varphi(y) dy = \sin x.$$

Ответ: $\varphi(x) = \cos x + \sin x$.

17.
$$\varphi(x) - \frac{24}{7} \int_{0}^{1} (1 - x^2)(1 - \frac{3}{2}y)\varphi(y)dy = x.$$

Ответ: $\varphi(x) = x + C(1 - x^2)$.

18.
$$\varphi(x) - \int_{0}^{1} (1+x)\cos 2\pi y \varphi(y) dy = x.$$

Ответ: $\varphi(x) = x$.

19.
$$\varphi(x) - \int_{0}^{1} (2x - y)\varphi(y)dy = \cos 2\pi x$$
.

Ответ: $\varphi(x) = \cos 2\pi x$.

20.
$$y(x) - \int_{0}^{1} (1+2xt)y(t)dt = -\frac{1}{6}(x+3).$$

Ответ: $y(x) = x + \frac{1}{2}$.

21.
$$y(x) - \int_{-1}^{1} (\frac{3}{2}xt + x^2(t-1))y(t)dt = 0.$$

Ответ: $y(x) = \frac{5}{2}x + x^2$.

22.
$$y(x) - \frac{4}{\pi} \int_{0}^{\pi} \cos^{2}(x - t) y(t) dt = \sin 2x$$
.

Ответ: Решения нет.

23.
$$y(x) - \int_{0}^{1} (x - \sqrt{t})y(t)dt = \frac{5}{3}x + \sqrt{x} - \frac{1}{6}$$
.

Ответ: $y(x) = 1 + \sqrt{x}$.

24.
$$y(x) - \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(x - t) y(t) dt = 0.$$

Ответ: $y(x) = C_1 \cos x + C_2 \sin x$.

25.
$$y(x) - 3 \int_{0}^{1} (x^{2}t^{2} - 4xt + 1)y(t)dt = 2\pi^{2} \cos 2\pi x.$$

Ответ: $y(x) = 2\pi^2 \cos 2\pi x + \frac{5}{3}(2x^2 - 1)$.

26.
$$y(x) - \int_{-1}^{1} (xt + x^2)y(t)dt = 0.$$

Ответ: y(x) = 0.

3.2. Решение уравнений Вольтера 2-го рода с вырожденным ядром.

Пусть исходное интегральное уравнение (2) при $\lambda = 1$ имеет вид:

$$\varphi(x) - \int_{a}^{x} \left(\sum_{i=1}^{n} p_i(x) q_i(y) \right) \varphi(y) dy = f(x)$$
(21)

(уравнение с вырожденным ядром)

Запишем его следующим образом:

$$\varphi(x) = f(x) - \int_{a}^{x} \left(\sum_{i=1}^{n} p_i(x) q_i(y) \right) \varphi(y) dy.$$
(22)

Вводя функции

и подставляя их в (22), заключаем, что решение интегрального уравнения (21) имеет вид

$$\varphi(x) = f(x) + \sum_{i=1}^{n} p_i(x)u_i(x).$$
(24)

Далее, дифференцируя соотношения (23) и подставляя вместо $\varphi(x)$ выражение (24), получаем для неизвестных функций $u_i(x)$ систему дифференциальных уравнений

$$u'_i = q_1(x)f(x) + \sum_{i=1}^n q_1(x)p_i(x)u_i(x),$$

.

$$u'_n = q_n(x)f(x) + \sum_{i=1}^n q_n(x)p_i(x)u_i(x).$$

Из (23) при x=0 находим начальные условия: $u_i(0)=...=u_n(0)$. Определив функции $u_i(x)$ и подставив их в (24), получим решение $\varphi(x)$ интегрального уравнения (21).

27. Решить интегральное уравнение

$$\varphi(x) = 1 + \int_{0}^{x} \frac{ch y}{ch x} \varphi(y) dy.$$

Решен ие:

Полагая $u(x) = \int_{0}^{x} ch(t) \varphi(y) dy$, получим

$$\varphi(x) = 1 + \frac{1}{ch(x)}u(x).$$

Далее, дифференциальное уравнение для u(x)имеет вид

$$u'(x) = ch(x)y(x) = ch(x)1 + \left(1 + \frac{1}{ch(x)}u(x)\right)$$

или

$$u'-u=ch x$$
.

Решая это уравнение с учетом начального условия u(0) = 0, находим

$$u(x) = \frac{1}{2}(xe^x + shx)$$
, откуда

$$\varphi(x) = 1 + \frac{1}{2} \frac{xe^x + sh x}{ch(x)}.$$

28.
$$\varphi(x) = e^x + \int_{0}^{x} \varphi(y) dy$$
.

Ответ: $\varphi(x) = e^{x}(x+1)$.

29.
$$\varphi(x) = x - 1 + \int_{0}^{x} (x - y)\varphi(y)dy$$
.

Ответ: $\varphi(x) = -e^{-x}$.

30.
$$y(x) = \frac{1}{1+x^2} + \int_0^x \sin(x-t)y(t)dt$$
.

Ответ: $y(x) = \frac{1}{1+x^2} + x \arctan x - \frac{1}{2} \ln(1+x^2)$.

31.
$$y(x) = 1 + \int_{0}^{x} t y(t) dt$$
.

Ответ: $y(x) = e^{x^2/2}$.

4. Понятие итерированного ядра и резольвенты. Решение интегрального уравнения Фредгольма второго рода с помощью резольвенты

Часто вместо одного уравнения рассматривают семейство уравнений

$$\varphi(x) - \lambda \int_{a}^{b} K(x, y)\varphi(y)dy = f(x), \ a \le x \le b,$$
(25)

соответствующих различным значениям числового параметра λ . Предполагается, что λ фиксировано. Будем решать уравнение (25) методом последовательных приближений при условии выполнения неравенства (5) $|\lambda| < \frac{1}{M}$. Взяв в качестве нулевого приближения $\varphi_0(x) = f(x)$, получим

$$\varphi_{1}(x) = f(x) + \lambda \int_{a}^{b} K(x, y) f(y) dy = f(x) + \lambda \int_{a}^{b} K_{1}(x, y) f(y) dy,$$
(26)

где $K_1(x, y) = K(x, y)$;

$$= f(x) + \lambda \int_{a}^{b} K_{1}(x, y) f(y) dy + \lambda^{2} \int_{a}^{b} K(x, y) (\int_{a}^{b} K_{1}(x, t) f(t) dt) dy =$$

/поменяем порядок интегрирования/

$$= f(x) + \lambda \int_{0}^{b} K_{1}(x, y) f(y) dy + \lambda^{2} \int_{0}^{b} \int_{0}^{b} K_{1}(x, y) K_{1}(x, t) dy f(t) dt =$$

$$= f(x) + \lambda \int_{0}^{a} K_{1}(x, y) f(y) dy + \lambda^{2} \int_{0}^{b} K_{2}(x, t) f(t) dt =$$

$$= f(x) + \lambda \int_{0}^{a} K_{1}(x, y) f(y) dy + \lambda^{2} \int_{0}^{b} K_{2}(x, y) f(y) dy,$$

$$= f(x) + \lambda \int_{0}^{a} K_{1}(x, y) f(y) dy + \lambda^{2} \int_{0}^{b} K_{2}(x, y) f(y) dy,$$

$$= f(x) + \lambda \int_{0}^{a} K_{1}(x, y) f(y) dy + \lambda^{2} \int_{0}^{a} K_{2}(x, y) f(y) dy,$$

$$= f(x) + \lambda \int_{0}^{a} K_{1}(x, y) f(y) dy + \lambda^{2} \int_{0}^{b} K_{2}(x, y) f(y) dy,$$

$$= f(x) + \lambda \int_{0}^{a} K_{1}(x, y) f(y) dy + \lambda^{2} \int_{0}^{b} K_{2}(x, y) f(y) dy,$$

$$= f(x) + \lambda \int_{0}^{a} K_{1}(x, y) f(y) dy + \lambda^{2} \int_{0}^{b} K_{2}(x, y) f(y) dy,$$

$$= f(x) + \lambda \int_{0}^{a} K_{1}(x, y) f(y) dy + \lambda^{2} \int_{0}^{b} K_{2}(x, y) f(y) dy,$$

$$= f(x) + \lambda \int_{0}^{a} K_{1}(x, y) f(y) dy + \lambda^{2} \int_{0}^{b} K_{2}(x, y) f(y) dy,$$

$$= f(x) + \lambda \int_{0}^{a} K_{1}(x, y) f(y) dy + \lambda^{2} \int_{0}^{b} K_{2}(x, y) f(y) dy,$$

$$= f(x) + \lambda \int_{0}^{a} K_{1}(x, y) f(y) dy + \lambda^{2} \int_{0}^{b} K_{2}(x, y) f(y) dy,$$

$$= f(x) + \lambda \int_{0}^{a} K_{1}(x, y) f(y) dy + \lambda^{2} \int_{0}^{b} K_{2}(x, y) f(y) dy,$$

$$= f(x) + \lambda \int_{0}^{a} K_{1}(x, y) f(y) dy + \lambda^{2} \int_{0}^{b} K_{2}(x, y) f(y) dy,$$

$$= f(x) + \lambda \int_{0}^{a} K_{1}(x, y) f(y) dy + \lambda^{2} \int_{0}^{b} K_{2}(x, y) f(y) dy,$$

$$= f(x) + \lambda \int_{0}^{a} K_{1}(x, y) f(y) dy + \lambda^{2} \int_{0}^{b} K_{2}(x, y) f(y) dy,$$

$$= f(x) + \lambda \int_{0}^{a} K_{1}(x, y) f(y) dy + \lambda^{2} \int_{0}^{b} K_{2}(x, y) f(y) dy,$$

$$= f(x) + \lambda \int_{0}^{a} K_{1}(x, y) f(y) dy + \lambda^{2} \int_{0}^{b} K_{2}(x, y) f(y) dy,$$

$$= f(x) + \lambda \int_{0}^{a} K_{1}(x, y) f(y) dy + \lambda^{2} \int_{0}^{b} K_{2}(x, y) f(y) dy,$$

$$= f(x) + \lambda \int_{0}^{a} K_{1}(x, y) f(y) dy + \lambda^{2} \int_{0}^{a} K_{2}(x, y) f(y) dy,$$

$$= f(x) + \lambda \int_{0}^{a} K_{1}(x, y) f(y) dy + \lambda^{2} \int_{0}^{a} K_{2}(x, y) f(y) dy,$$

$$= f(x) + \lambda \int_{0}^{a} K_{1}(x, y) f(y) dy + \lambda^{2} \int_{0}^{a} K_{2}(x, y) f(y) dy,$$

где $K_2(x,y) = \int_{a}^{b} K(x,t)K_1(t,y)dt;$

Вообще
$$\varphi_n(x) = f(x) + \sum_{j=1}^n \lambda^j \int_a^b K_j(x,y) f(y) dy =$$

$$= f(x) + \lambda \int_{a}^{b} \left(\sum_{j=1}^{n} \lambda^{j-1} K_{j}(x, y) \right) f(y) dy, \tag{28}$$

где
$$K_j(x,y) = \int_a^b K(x,t)K_{j-1}(t,y)dt; j = 2,3,...$$
 (29)

Ядра $K_j(x,y)$ называются *итерированными* (повторными) ядрами. Пользуясь понятием итерированных ядер, последовательным приближениям (26)-(28) можно придать вид

$$\varphi_n(x) = f(x) + \lambda \int_a^b \left(\sum_{j=1}^n \lambda^{j-1} K_j(x, y) \right) f(y) dy.$$
(30)

При
$$|\lambda| < \frac{1}{M}$$
 (31)

ряд

$$R(x, y, \lambda) = \sum_{j=1}^{\infty} \lambda^{j-1} K_j(x, y)$$
(32)

сходится равномерно при $a \le x \le b$, $a \le y \le b$ к функции $R(x,t,\lambda)$, называемой резольвентой ядра K(x,t). Следовательно, (30) в пределе при $n \to \infty$ переходит в формулу

$$\varphi(x) = f(x) + \lambda \int_{a}^{b} R(x, y, \lambda) f(y) dy,$$
(33)

выражающую решение интегрального уравнения через резольвенту.

33. С помощью итерированных ядер найти резольвенту и решение интегрального уравнения

$$\varphi(x) - \frac{1}{\ln 2} \int_{0}^{1} \frac{x}{1+y^{2}} \varphi(y) dy = 1 + x^{2}.$$

Решение. В данном случае $K(x,y) = \frac{x}{1+y^2}$ и для итерированных ядер на

основании (29) получаем

$$K_1(x, y) = K(x, y) = \frac{x}{1 + y^2},$$

$$K_2(x,y) = \int_0^1 K(x,t)K_1(t,y)dt = \int_0^1 \frac{x}{1+s^2} \frac{s}{1+y^2} dy = \frac{\ln 2}{2} \frac{x}{1+y^2},$$

$$K_3(x,y) = \int_0^1 K(x,t)K_2(t,y)dt = \frac{\ln 2}{2} \int_0^1 \frac{x}{1+s^2} \frac{s}{1+y^2} dy = \left(\frac{\ln 2}{2}\right)^2 \frac{x}{1+y^2},$$

.

$$K_j(x, y) = \left(\frac{\ln 2}{2}\right)^{j-1} \frac{x}{1+v^2}.$$

Поэтому резольвента ядра равна

$$R(x,t,\lambda) = \sum_{j=1}^{\infty} \lambda^{j-1} K_j(x,t) = \sum_{j=1}^{\infty} \left(\frac{\ln 2}{2}\lambda\right)^{j-1} \frac{x}{1+y^2} = \frac{1}{1-\frac{\ln 2}{2}\lambda} \frac{x}{1+y^2},$$

причем этот ряд сходится в области

$$\left|\lambda\right| < \frac{2}{\ln 2}.\tag{34}$$

Заметим, что в рассматриваемом случае

$$M^{2} = \int_{00}^{11} |K(x,y)|^{2} dxdy = \int_{00}^{11} \frac{x^{2}}{(1+y^{2})^{2}} dxdy = \frac{\pi+2}{24},$$

т.е. условие (31) приводит к неравенству

$$\left|\lambda\right| < 2\sqrt{\frac{6}{\pi + 2}} \ . \tag{35}$$

Так как $\sqrt{\frac{6}{\pi+2}} < \frac{2}{\ln 2}$, то из сравнения (34) и (35) видно, что в рассматриваемом случае область сходимости ряда Неймана для резольвенты шире, чем это гаран-

$$\left|\lambda\right| < \frac{1}{M} = \left(\int_{aa}^{bb} \left|K(x,y)\right|^2 dxdy\right)^{-\frac{1}{2}}.$$

тируется условием

Далее, для заданного уравнения $\lambda = \frac{1}{\ln 2}$ и, следовательно,

$$R(x, y, \frac{1}{\ln 2}) = 2 \frac{x}{1 + v^2}$$
. Решение уравнения на основании (33) равно

$$\varphi(x) = 1 + x^2 + \frac{1}{\ln 2} \int_{0}^{1} 2 \frac{x}{1 + y^2} (1 + y^2) dy = 1 + \frac{2}{\ln 2} x + x^2.$$

Методом итерированных ядер найти резольвенту и решение заданных интегральных уравнений:

34.
$$\varphi(x) - \frac{1}{2\pi} \int_{0}^{\pi} \varphi(y) dy = \sin x$$
.

Ответ:
$$R(x, y, \lambda) = \frac{1}{1 - \pi \lambda}$$
, $\varphi(x) = \sin x$.

35.
$$\varphi(x) - \frac{\ln 2}{2} \int_{0}^{1} 2^{x+y} \varphi(y) dy = x.$$

ОТВЕТ:
$$R(x, y, \lambda) = 2^{x+y} \frac{1}{1 - \frac{3\lambda}{2\ln 2}},$$

$$\varphi(x) = \frac{2\ln 2 - 1}{\ln 2} 2^{x+1} + x.$$

36.
$$y(x) - \pi \int_{0}^{1} x \sin 2\pi t \ y(t) dt = \cos 2\pi x.$$

Ответ:
$$R(x, t, \lambda) = x \sin 2\pi t$$
, $v(x) = \cos 2\pi x$.

37.
$$y(x) - \frac{1}{2} \int_{0}^{1} xe^{t} y(t) dt = e^{-x}$$
.

Otbet:
$$R(x,t,\lambda) = \frac{xe^t}{1-\lambda}$$
, $y(x) = e^{-x} + x$.

38.
$$y(x) - \int_{0}^{\pi/2} \sin x \cos t \ y(t) dt = 1.$$

Ответ:
$$R(x,t,\lambda) = \frac{2}{2-\lambda} \sin x \cos t$$
, $y(x) = 1 + 2\sin x$.

5. Характеристические числа и собственные функции. Теоремы Фредгольма

5.1. Собственное число (значение) и собственный вектор матрицы.

$$X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
 - собственный вектор матрицы $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$,

если $AX = \lambda X$,

т.е. если после преобразования вектора X с помощью матрицы A получаем вектор Y = AX, параллельный вектору A. λ - называется собственным числом матрицы A.

$$AX - \lambda X = 0$$
 или $(A - \lambda E)X = 0$.

Получаем однородную систему уравнений

$$\begin{pmatrix} (a_{11} - \lambda) & a_{12} \\ a_{21} & (a_{22} - \lambda) \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0$$

или

$$(a_{11} - \lambda)x_1 + a_{12}x_2 = 0,$$

$$a_{21}x_1 + (a_{22} - \lambda)x_2 = 0.$$
(36)

Для того чтобы однородная система (36) имела ненулевое решение необходимо и достаточно, чтобы определитель системы был равен нулю.

$$\begin{vmatrix} (a_{11} - \lambda) & a_{12} \\ a_{21} & (a_{22} - \lambda) \end{vmatrix} = 0$$

или

$$\det(A - \lambda E) = 0. \tag{37}$$

Это характеристическое уравнение матрицы A. Из этого характеристического уравнения находятся собственные значения λ матрицы A. Каждому собственному значению λ соответствует собственный вектор, координаты которого определяются из системы (36) при соответствующем λ .

5.2. Характеристические числа и собственные функции интегрального уравнения.

Значение параметра λ , при которых однородное уравнение Фредгольма

$$\varphi(x) - \lambda \int_{a}^{b} K(x, y)\varphi(y)dy = 0$$
(38)

имеет ненулевые (нетривиальные) решения $\varphi(x) \neq 0$, называются характеристическими числами этого уравнения или ядра K(x,y), а каждое ненулевое решение — собственной функцией, соответствующей характеристическому числу λ . Заметим, что число $\lambda=0$ не является характеристическим, т.к. при $\lambda=0$ уравнение (38) имеет лишь нулевое решение. Если λ - характеристическое число, то число $\mu=1/\lambda$ называется собственным числом интегрального уравнения. При этом $\mu\neq0$.

Из результатов п. 3. следует, что в случае уравнения с вырожденным ядром

$$\varphi(x) - \lambda \int_{a}^{b} \left(\sum_{i=1}^{n} p_i(x) q_i(y) \right) \varphi(y) dy = 0$$
(39)

всякое решение имеет вид

$$\varphi(x) = \lambda \sum_{i=1}^{n} c_i p_i(x), \tag{40}$$

где $C = (c_1, c_2, ..., c_n)^T$ - решение однородной системы

$$c_i - \lambda \sum_{j=1}^{n} \alpha_{ij} c_j = 0, \quad i = 1, 2, ..., n$$

или в матричной форме

$$(E - \lambda A)C = 0 \tag{41}$$

с матрицей $A = \{\alpha_{ij}\}$. По формуле (17)

$$\alpha_{ij} = \int_{a}^{b} q_i(x) p_j(x) dx, i, j = 1, 2, ..., n.$$
(42)

Заметим, что если заменить λ на $1/\mu$, то система (41) принимает вид $(A-\mu E)C=0,\ \mu\neq 0.$

Отсюда следует, что собственные числа интегрального уравнения (39) совпадают с собственными числами матрицы A, а собственные функции определяются соотношением (40), где $C = (c_1, c_2, ..., c_n)^T$ - соответствующие собственные векторы этой матрицы.

39. Найти характеристические числа и собственные функции уравнения

$$\varphi(x) - \lambda \int_{0}^{1} (xy - 2x^{2}) \varphi(y) dy = 0.$$

Р е ш е н и е. Ядро $K(x, y) = x y - 2x^2$ - вырожденное. Полагая

$$p_1(x) = x,$$
 $p_2(x) = -2x^2,$
 $q_1(y) = y,$ $q_2(y) = 1,$

Найдем элементы матрицы A в (43)

$$\alpha_{11} = \int_{0}^{1} q_{1}(x)p_{1}(x)dx = \int_{0}^{1} x^{2}dx = \frac{1}{3}, \qquad \alpha_{12} = \int_{0}^{1} q_{1}(x)p_{2}(x)dx = -2\int_{0}^{1} x^{3}dx = -\frac{1}{2}, \alpha_{21} = \int_{0}^{1} q_{2}(x)p_{1}(x)dx = \int_{0}^{1} xdx = \frac{1}{2}, \qquad \alpha_{22} = \int_{0}^{1} q_{2}(x)p_{2}(x)dx = -2\int_{0}^{1} x^{2}dx = -\frac{2}{3}.$$

Характеристическое уравнение для определения собственных чисел матрицы A имеет вид

$$\det(A - \mu E) = \begin{vmatrix} \frac{1}{3} - \mu & -\frac{1}{2} \\ \frac{1}{2} & -\frac{2}{3} - \mu \end{vmatrix} = \mu^2 + \frac{1}{3}\mu + \frac{1}{36} = (1 + \frac{1}{6})^2 = 0,$$

откуда $\mu = -1/6$ - единственное собственное число матрицы A. Соответствующие собственные векторы находим из системы уравнений

$$(A + \frac{1}{6}E)C = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

общее решение которой $c_1 = C$, $c_2 = C$, где C – произвольная постоянная. Следовательно, окончательно получаем, что заданное интегральное уравнение име-

ет единственное характеристическое число $\lambda = \frac{1}{11} = -6$, а соответствующие

собственные функции имеют вид

$$\varphi(x) = -6(c_1x - 2c_2x^2) = C(x - 2x^2),$$

где C – произвольная постоянная.

Интегральное уравнение может вообще не иметь характеристических чисел (например, в том случае, когда ядро K(x,t) - вырожденное, матрица A в (41) нулевая) либо не иметь действительных характеристических чисел.

40. Найти характеристические числа и собственные функции уравнения

$$\varphi(x) - \lambda \int_{-\pi}^{\pi} x \cos y \, \varphi(y) dy = 0.$$
 Решение. Имеем

$$p_1(x) = x,$$

$$q_1(y) = \cos y$$
,

$$\varphi(x) - \lambda xc = 0,$$
 $c = \int_{-\pi}^{\pi} \cos y \varphi(y) dy,$

откуда

$$c - \lambda c \int_{-\pi}^{\pi} x \cos x \, dx = 0.$$

 $c-\lambda c\int\limits_{-\pi}^{\pi}x\cos x\,dx=0.$ Но $\int\limits_{-\pi}^{\pi}x\cos x\,dx=0,$ поэтому при любом λ последнее уравнение имеет только

одно решение: c=0. Следовательно, при любом λ интегральное уравнение имеет только тривиальное решение, т.е. не имеет характеристических чисел.

Найти характеристические числа и собственные функции заданных интегральных уравнений с вырожденными ядром (ограничиться случаем действительных характеристических чисел):

41.
$$\varphi(x) - \lambda \int_{0}^{1} (1+2x)y \, \varphi(y) dy = 0.$$

Ответ:
$$\lambda = \frac{6}{7}$$
, $\varphi(x) = C(1 + 2x)$.

42.
$$y(x) - \lambda \int_{0}^{1} (x+t)y(t)dt = 0.$$

Ответ:
$$\mu_{1,2} = \frac{1}{2} \pm \frac{1}{\sqrt{3}}, \ y_{1,2}(x) = C(\sqrt{3}x \pm 1).$$

43.
$$y(x) - \lambda \int_{0}^{1} (1+2x)t \ y(t)dt = 0.$$

Ответ:
$$\lambda = \frac{6}{7}$$
, $y(x) = C(1+2x)$.

44.
$$\varphi(x) - \lambda \int_{-1}^{1} |x| \varphi(y) dy = 0.$$

Ответ: $\lambda = 1$, $\varphi(x) = C|x|$.

5.3. Теоремы Фредгольма.

Для уравнения Фредгольма 2-го рода вида

$$\varphi(x) - \lambda \int_{a}^{b} K(x, y)\varphi(y)dy = f(x), \tag{44}$$

где a и b - конечные числа, а ядро K(x,y) и свободный член f(x) интегрируемы с квадратом в области $a \le x, y \le b$ и на отрезке [a,b] (в частности, непрерывны), справедливы следующие **теоремы Фредгольма** (при формулировке которых мы ограничимся случаем действительного ядра K(x,y).

1. Однородное уравнение

$$\varphi(x) - \lambda \int_{a}^{b} K(x, y)\varphi(y)dy = 0$$
(45)

имеет либо конечное, либо счетное множество характеристических чисел; если этих чисел счетное множество, то они стремятся к бесконечности.

2. Eсли λ - характеристиченсоке число, то уравнение (45) и сопряженное ему однородное уравнение

$$\varphi(x) - \lambda \int_{a}^{b} K^{*}(x, y)\varphi(y)dy = 0, \tag{46}$$

где $K^*(x,y) = K(y,x)$, имеют одно и то же, и при том конечное, число независимых решений.

- 3. Альтернатива Фредгольма: либо неоднородное уравнение (44) имеет одно и только одно решение для любой функции $f(x) \in L_2[a,b]$, либо соответствующее однородное уравнение (45) имеет по крайней мере одно нетривиальное решение. (Другими словами, если число λ не является характеристическим, то уравнение (44) имеет, и при том единственное, решение для любой функции $f(x) \in L_2[a,b]$).
- 4. Если λ характеристическое число, то для того чтобы уравнение (44) имело решение, необходимо и достаточно, чтобы свободный член f(x) был

ортогонален любому решению $\phi^*(x)$ однородного сопряженного уравнения (46), m.e.

$$\int_{a}^{b} f(x))\varphi^{*}(y)dy = 0.$$

Проиллюстрируем теоремы Фредгольма на примере интегрального уравнения с вырожденным ядром.

45. Исследовать решения интегрального уравнения

$$\varphi(x) - \lambda \int_{-\pi}^{\pi} (x^2 \cos y + x \sin y) \varphi(y) dy = \cos x$$

в зависимости от значений параметра λ .

Р е ш е н и е. Решение интегрального уравнения сводится к решению неоднородной системы

$$(E - \lambda A)C = F, (47)$$

где $F = (f_1, f_2, ..., f_n)^T$, $f_i = \int_a^b q_i(x) f(x) dx$. В рассматриваемом случае имеем

$$p_1(x) = x^2,$$
 $p_2(x) = x,$ $q_1(y) = \cos y,$ $q_2(y) = \sin y$

$$p_{1}(x) = x , \qquad p_{2}(x) = x,$$

$$q_{1}(y) = \cos y, \qquad q_{2}(y) = \sin y.$$

$$\alpha_{11} = \int_{-\pi}^{\pi} \cos x \cdot x^{2} dx = 4\pi, \qquad \alpha_{12} = \int_{\pi}^{\pi} \cos x \cdot x dx = 0,$$

$$\alpha_{21} = \int_{-\pi}^{\pi} \sin x \cdot x^{2} dx = 0, \qquad \alpha_{22} = \int_{\pi}^{\pi} \sin x \cdot x dx = -2\pi,$$

$$f_{1} = \int_{-\pi}^{\pi} \cos^{2} x dx = \pi, \qquad f_{2} = \int_{-\pi}^{\pi} \sin x \cos x dx = 0.$$

$$-\pi$$

$$\alpha_{21} = \int_{-\pi}^{\pi} \sin x \cdot x^2 dx = 0, \qquad \alpha_{22} = \int_{\pi}^{\pi} \sin x \cdot x dx = -2\pi,$$

$$f_1 = \int_{-\pi}^{\pi} \cos^2 x \, dx = \pi,$$
 $f_2 = \int_{-\pi}^{\pi} \sin x \cos x \, dx = 0.$

$$\begin{pmatrix} 1 - 4\pi\lambda & 0 \\ 0 & 1 + 2\pi\lambda \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} \pi \\ 0 \end{pmatrix}.$$
 (48)

Характеристическое уравнение $\det(E - \lambda A) = (1 + 2\pi\lambda)(1 - 4\pi\lambda) = 0$

имеет корни $\lambda_1 = \frac{1}{4\pi}$ и $\lambda_2 = -\frac{1}{2\pi}$, являющиеся характеристическими

числами соответствующего однородного уравнения.

При любом $\lambda \neq \frac{1}{4\pi}, -\frac{1}{2\pi}$ система (48) имеет единственное решение

$$c_1 = \frac{\pi}{1 - 4\pi\lambda}, \quad c_2 = 0;$$

соответствующее решение интегрального уравнения:

$$\varphi(x) = \cos x + \frac{\lambda \pi}{1 - 4\pi \lambda} x^2, \quad \lambda \neq \frac{1}{4\pi}, -\frac{1}{2\pi}.$$

При
$$\lambda = \lambda_1 = \frac{1}{4\pi}$$
 из (48) получаем

$$\begin{pmatrix} 0 & 0 \\ 0 & \frac{3}{2} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} \pi \\ 0 \end{pmatrix}.$$

Эта система, а вместе с ней и исходное интегральное уравнение решения не имеют.

При
$$\lambda = \lambda_2 = -\frac{1}{2\pi}$$
 система (37) принимает вид

$$\begin{pmatrix} 3 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} \pi \\ 0 \end{pmatrix}$$

и имеет решения $c_1 = \frac{\pi}{3}$, $c_2 = C$. Соответствующие решения интегрального уравнения таковы:

$$\varphi(x) = \cos x + \lambda_2(c_1x^2 + c_2x) = \cos x - \frac{1}{6} + Cx,$$

где C – произвольная постоянная.

Исследовать решения заданных уравнений с вырожденным ядром при различных значениях параметра λ .

46.
$$\varphi(x) - \lambda \int_{0}^{1} x(1+y) \varphi(y) dy = x^{2}$$
.

Ответ: при
$$\lambda \neq \frac{6}{5}$$
, $\varphi(x) = x^2 + \frac{1}{2} \frac{7\lambda}{6 - 5\lambda} x$, при $\lambda = \frac{6}{5}$ решения нет.

47.
$$\varphi(x) - \lambda \int_{0}^{1} x \varphi(y) dy = \sin 2\pi x.$$

Ответ: при
$$\lambda \neq 2$$
, $\varphi(x) = \sin 2\pi x$, при $\lambda = 2$ $\varphi(x) = \sin 2\pi x + Cx$.

48.
$$y(x) - \lambda \int_{-1}^{1} (x+t)y(t) dt = \frac{1}{2} + \frac{3}{2}x$$
.

Ответ: при
$$\lambda \neq \pm \frac{\sqrt{3}}{2} \ y(x) = \frac{1}{2} + \frac{3}{2} x + \frac{\lambda}{1 - \frac{4}{3} \lambda^2} ((1 + 2\lambda)x + 1 + \frac{2}{3}\lambda),$$
 при $\lambda = \pm \frac{\sqrt{3}}{2}$ решений нет.

49.
$$y(x) - \lambda \int_{0}^{\pi} \cos(x+t)y(t) dt = 1.$$

Ответ: при
$$\lambda \neq \pm \frac{2}{\pi}$$
 $y(x) = 1 + \frac{2\lambda}{1 + \frac{\lambda\pi}{2}} \sin x$, при $\lambda = \frac{2}{\pi}$ $y(x) = 1 - \sin x + C \cos x$, при $\lambda = -\frac{2}{\pi}$ решений нет.

6. Физические примеры.

Многие задачи математической физики приводят к линейным интегральным уравнениям. Рассмотрим некоторые примеры.

1. Если внешнее воздействие на какую-либо линейную систему описывается функцией f(x) ($a \le x \le b$), то результат этого воздействия описывается функцией

$$\mathcal{F}(x) = \int_{a}^{b} G(x;\xi) f(\xi) d\xi, \tag{49}$$

где $G(x;\xi)$ - функция влияния, определяемая рассматриваемой системой. Например, f(x) может означать плотность нагрузки, распределяемой вдоль балки, а f(x) - соответствующий прогиб и т.п.

Допустим, что вид воздействия нам неизвестен, но известен отклик системы на это воздействие и требуется по этому отклику восстановить воздействие. Тогда в соотношении (49) функция f(x) (как и $G(x;\xi)$) будет заданной, а f(x) - искомой, т.е. мы приходим к интегральному уравнению - линейному интегральному уравнению Фредгольма первого рода.

2. Бывают случаи, когда известной оказывается некоторая линейная комбинация $\varphi(x) = \alpha f(x) + \beta f(x)$ функций, описывающих внешнее воздействие и соответствующий отклик. Тогда для восстановления внешнего воздействия потребуется решить интегральное уравнение

$$\alpha f(x) + \beta \int_{a}^{b} G(x;\xi) f(\xi) d\xi = \varphi(x). \tag{50}$$

Это линейное интегральное уравнение Фредгольма второго рода с искомой функцией f(x).

3. Приведем еще одну задачу, сводящуюся к уравнению вида (50). Рассмотрим уравнение вынужденных поперечных колебаний струны, закрепленной при x = 0 и x = l [11]:

$$\rho u_{tt}^{"} = P u_{xx}^{"} + f(x,t). \tag{51}$$

Если внешнее воздействие является гармоническим,

$$f(x.t) = \varphi(x)\cos\omega t,$$

и нас интересует вынужденное колебание, происходящее с той же частотой ω , т.е. $u(x,t)=v(x)\cos\omega t$,

то после подстановки в (51) мы приходим к краевой задаче

$$Pv'' = -\rho\omega^2 v - \varphi(x)$$
 $(0 \le x \le l)$, $v(0) = 0$, $v(l) = 0$.

При $\omega=0$ получилась бы задача на стационарное отклонение струны под действием внешней нагрузки. Эта задача рассмотрена, например, в [11]. Решение получено в виде

$$v(x) = \int_{0}^{l} G(x;\xi) \left[-\frac{1}{P} \varphi(\xi) \right] d\xi, \tag{52}$$

где функция влияния в данной задаче равна

$$G(x,\xi) = \begin{cases} -(l-\xi)xl^{-1} & (0 \le \xi \le x \le l), \\ -\xi(l-x)l^{-1} & (0 \le x \le \xi \le l). \end{cases}$$

Однако при $\omega \neq 0$ к внешней нагрузке $\varphi(x)$ добавляется инерционный член $\rho \omega^2 v(x)$, зависящий от искомого решения. Если на минуту считать его известным и воспользоваться решением (52), то придем к соотношению

$$v(x) = -\frac{\rho \omega^2}{P} \int_{0}^{l} G(x;\xi) v(\xi) d\xi - \frac{1}{P} \int_{0}^{l} G(x;\xi) v(\xi) d\xi.$$

Но так как v(x) на самом деле неизвестна, то это соотношение представляет собой интегральной уравнение, причем того же типа, что и (50).

4. Уравнения Вольтерра второго рода типичны при описании физических процессов, связанных с явлениями последействия. В этих уравнениях переменная x обычно обозначает время. Тогда состояние системы, характеризуемое функцией y(x), определяется внешним воздействием f(x)и зависит от состояния системы в предшествующие моменты времени. Ядро K(x,s) описывает величину последствия состояния системы в момент s на состояние системы в

В качестве примера рассмотрим электрическую цепь, изображенную на рис. 1. Пусть в катушке индуктивности не проявляется явление гистерезиса. Тогда поток индукции в катушке Φ связан с током I_L соотношением $\bar{\Phi} = L \cdot I_L$. Согласно известным формулам электродинамики имеем

$$R \cdot I_R = u, \quad \frac{1}{C} \cdot I_C = \frac{du}{dt}, \quad \frac{d\Phi}{dt} = u.$$

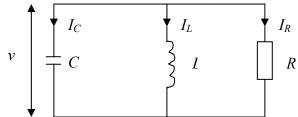


Рис. 1.

Используя закон Кирхгофа $I_R + I_C + I_L = 0$, приходим к следующему дифференциальному уравнению относительно u:

$$\frac{u}{L} + \ddot{u}C + \frac{\dot{u}}{R} = 0.$$

Пусть теперь катушка снабжена магнитным сердечником, в котором проявляется гистерезис. Тогда вместо соотношения $\Phi = L \cdot I_L$ нужно использовать более сложное, учитывающее зависимость Φ не только от значения I_L в момент t, но и в предшествующие моменты времени (эффект последействия). Это видоизмененное соотношение таково:

$$\Phi(t) = L \cdot I_L + \int_{t_0}^t M(t - \tau) I_L(\tau) d\tau.$$

 $\Phi(t) = L \cdot I_L + \int\limits_{t_0}^t M(t-\tau)I_L(\tau)d\tau.$ Здесь $M(t-\tau)$ - функция, учитывающая влияние значения I_L в момент τ на величину Φ в момент t и определяемая обычно эмпирическим способом.

Имеем

$$I_L = -I_R - I_C = -\frac{u}{R} - C\dot{u}.$$

$$u(t) = u(t_0)e^{-\frac{t-\tau}{RC}} \frac{I_L(\tau)}{C} d\tau$$

$$\Phi(t) = \int\limits_{t_0}^t u(\xi) \, d\xi = u(t_0) \int\limits_{t_0}^t e^{-\frac{\xi - t_0}{RC}} \, d\xi - \int\limits_{t_0}^t d\xi \int\limits_{t_0}^\xi e^{-\frac{\xi - \tau}{RC}} \frac{I_L(\tau)}{C} d\tau =$$

$$= f(u(t_0),t) + \int_{t_0}^t \widetilde{K}(t-\tau)I_L(\tau)d\tau,$$

$$\widetilde{K}(t-\tau) = -\int_{\tau}^{t} e^{-\frac{\xi-\tau}{RC}} \frac{1}{C} d\xi.$$

Подставляя полученное выражение для Φ в уравнение, связывающее Φ и I_L , получим

$$f(u(t_0),t)+\int\limits_{t_0}^t\widetilde{K}(t-\tau)I_L(\tau)d\tau=LI_L(t)+\int\limits_{t_0}^tM(t-\tau)I_L(\tau)d\tau$$
 или окончательно для $I_L(t)$ имеем

$$I_{L}(t) = \int_{t_{0}}^{t} K(t-\tau)I_{L}(\tau)d\tau + f(u(t_{0}),t)\frac{1}{L},$$

где $K(\xi) = \left[\widetilde{K}(\xi) - M(\xi)\right] \frac{1}{L}$. Таким образом, приходим к интегральному уравнению Вольтера второго рода.

Ряд других конкретных физических задач, приводящих к интегральным уравнениям, содержится, например, в [2, 11].

Появление интегральных уравнений при исследовании краевых задач является естественным, т.к. такие уравнения связывают между собой значения известных и неизвестных функций на конечном интервале, а не на бесконечно малом, как дифференциальные уравнения.

7. Связь интегральных уравнений с дифференциальными

Интегральные уравнения Вольтера 2-го рода используются обычно при описании динамики различных процессов в системах.

В частности, всякая задача Коши для линейного дифференциального уравнения

$$\frac{d^n y}{dx^n} + a_1(x)\frac{d^{n-1} y}{dx^{n-1}} + \dots + a_n(x)y = f(x),$$

$$y(x_0) = y_0, \quad y'(x_0) = y_1, \dots, \quad y^{(n-1)}(x_0) = y_{n-1}$$

может быть сведена к решению неоднородного линейного интегрального уравнения Вольтера 2-го рода.

50. Составить интегральное уравнение, соответствующее задаче Коши

$$u''+2u'+u=x^2$$
, $u(0)=1$, $u'(0)=0$.

Решение: Положим

$$u'(x) = y(x). (53)$$

Интегрируя (53) с учетом начальных условий, последовательно находим

$$u'(x) = u'(0) + \int_{0}^{x} y(t)dt = \int_{0}^{x} y(t)dt,$$
(54)

$$u(x) = u(0) + \int_{0}^{x} ds \int_{0}^{s} y(t)dt = 1 + \int_{0}^{x} (x - t)y(t)dt.$$
 (55)

Подставляя (53) – (55) в исходное дифференциальное уравнение, получаем

$$y(x) + 2\int_{0}^{x} y(t)dt + \left(1 + \int_{0}^{x} (x-t)y(t)dt\right) = x^{2},$$

или

$$y(x) = x^{2} - 1 - \int_{0}^{x} (2 + x - t)y(t)dt.$$
 (56)

Таким образом, показано, что если u(x) – решение исходной задачи Коши, то функция y(x) = u''(x) удовлетворяет интегральному уравнению (56). Обратно, если y(x) - решение этого уравнения, то функция u(x), определяемая соотношением (55), удовлетворяет как исходному дифференциальному уравнению, так и начальным условиям. Следовательно, рассматриваемая задача Коши эквивалентна интегральному уравнению (56).

Проверить, что данные функции являются решениями соответствующих интегральных уравнений:

51.
$$y(x) = e^{2x}$$
, $y(x) = e^x + \int_0^x e^{x-t} y(t) dt$.

52.
$$y(x) = xe^{x^2/3}$$
, $y(x) = x + \int_0^x xt \, y(t)dt$.

53.
$$y(x) = e^{-x}(\frac{x^2}{2} + 1), \quad y(x) = e^{-x} + \int_{0}^{x} e^{-(x-t)} \sin(x-t)y(t)dt.$$

Составить интегральные уравнения, соответствующие следующим задачам Коши:

54.
$$u'+2xu=e^x$$
, $u(0)=1$.

Ответ:
$$y(x) = e^x - 2x - \int_0^x 2xy(t)dt$$
.

55.
$$u''-2u'+u=0$$
, $u(2)=1$, $u'(2)=-2$.

Ответ:
$$y(x) = 2x - 9 + \int_{2}^{x} (2 - x + t)y(t)dt$$
.

56. $u'' - \sin x \cdot u' + e^x u = x$, u(0) = 1, u'(0) = -1.

Ответ:
$$y(x) = e^x(x-1) - \sin x + x + \int_0^x (\sin x - e^x(x-t))y(t)dt$$
.

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

- 1. Голосков Д.П. Уравнения математической физики. Решение задач в системе Maple. Учебник для вузов СПб.: Питер, 2004. 539 с.
- 2. Васильев А.Б., Тихонов Н.А. Интегральные уравнения. М.: Изд-во Моск. ун-та, 1989. 156 с.
- 3. Сборник задач по уравнениям математической физики / Владимиров В.С., Михайлов В.П., Вашарин А.А., и др. М.: Наука, 1982. 256 с.
- 4. Сборник задач по математике для втузов. Ч. 4. Методы оптимизации. Уравнения в частных производных. Интегральные уравнения: Учеб. пособ. /Вуколов Э.А., Ефимов А.В. и др. – М.: Наука, 1980. 304 с.
- 5. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. М.: Наука, 1981. 542 с.
- 6. Арсенин В.Я. Математическая физика. Основные уравнения и специальные функции.: М. Наука, 1965. 367 с. М.: Наука, 1977.
- 7. Владимиров В.С., Жаринов В.В. Уравнения математической физики. М.: ФИЗМАТЛИТ, 2003. 400 с.
- 8. Владимиров В.С. Уравнения математической физики. М. Наука, 1976. 527 с.
- 9. Забрейко П.П. и др. Интегральные уравнения. М.: Наука, 1968.
- 10. Трикоми Ф. Интегральные уравнения. М.: ИЛ, 1960. 300 с.
- 11. Мышкис А.Д. Математика для втузов. Специальные курсы. М.: Наука, 1971. 632 с.

СОДЕРЖАНИЕ

	Вопросы и задачи для самопроверки	3
1.	Интегральные уравнения. Основные понятия и определения. Классификация уравнений	4
2.	2	5
	2.1. Построение решения уравнения Фредгольма второго рода при малых значениях параметра методом последовательных приближе-	
	ний	5
	2.2 Построение решения уравнения Вольтерра второго рода методом последовательных приближений	7
3.		10
	3.1. Решение уравнений Фредгольма 2-го рода с вырожденным яд-	
	ром	10
	3.2. Решение уравнений Вольтерра 2-го рода с вырожденным ядром.	14
4.		1.0
5.	ного уравнения Фредгольма второго рода с помощью резольвенты Характеристические числа и собственные функции. Теоремы Фред-	16
	гольма	19
	5.1. Собственное число (значение) и собственный вектор матрицы	19
	5.2. Характеристические числа и собственные функции	20
	5.3. Теоремы Фредгольма	23
6.	Физические примеры	26
7.	Связь интегральных уравнений с дифференциальными	29
	Список рекомендуемой литературы	31