

ТЕОРЕТИЧЕСКИЕ ОБОСНОВАНИЯ И РАСЧЕТЫ В КАЧЕСТВЕННОМ АНАЛИЗЕ

Составители: Л.А. Кочергина

М.И. Базанов

В.П. Васильев

Под редакцией М.И. Базанова

Кочергина, Л.А.Теоретические обоснования и расчеты в качественном анализе: учебно-методическое пособие / Л.А. Кочергина, М.И. Базанов, В.П. Васильев, под ред. М.И. Базанова; Иван.гос. хим.-технол. ун-т.- Иваново, 2007. — 84 с. ISBN 5-9616-0235-4.

В издании содержатся теоретические обоснования систематического кислотно-основного метода качественного анализа. Приведены примеры расчетов, связанных с реакциями кислотно-основного взаимодействия, комплексообразования, гетерогенными и окислительно-восстановительными процессами. Расчеты выполнены на основании современных представлений теории ступенчатых равновесий в растворах.

Предназначено для студентов, углубленно изучающих раздел аналитической химии – качественный анализ, в частности, для студентов второго курса ИО Высшего химического колледжа РАН. Полезно аспирантам и сотрудникам, работающим в указанной области.

Печатается по решению редакционно-издательского совета Ивановского государственного химико-технологического университета

Рецензенты:

доктор химических наук Е.В. Козловский (Ивановский государственный университет); кафедра аналитической химии Ивановского государственного химикотехнологического университета

ISBN 5-9616-0235-4

© Ивановский государственный химико-технологический университет, 2007

Гл. 1. Кислотно-основные равновесия.

Классические представления о кислотах и основаниях основаны на теории электролитической диссоциации.

Более общей теорией кислот и оснований явилась протолитическая теория Бренстеда-Лоури. В протолитической теории <u>кислотами</u> называются вещества, способные отдавать протон другому веществу, <u>основаниями</u> — вещества, проявляющие тенденцию к присоединению протона.

Все реакции кислотно-основного взаимодействия состоят в обратимом переносе протона от кислоты к основанию.

В результате такого процесса образуется пара новых частиц, одна из которых также способна отдавать протон, другая – присоединять. Таким образом, кислота оказывается в равновесии с сопряженным основанием, а основание – с сопряженной кислотой.

$$HAc$$
 + H_2O \longleftrightarrow H_3O^+ + Ac^- кислота основание сопряженная кислота основание HCN + $OH^ \longleftrightarrow$ HOH + CN^- кислота основание сопряженная сопряженное кислота основание

Соединения, которые могут быть как кислотами, так и основаниями, называются АМФОЛИТАМИ (амфипротными). Примеры амфолитов — вода, продукты ступенчатой диссоциации многоосновных кислот — HCO_3^- , $H_2PO_4^-$ и др.

1.1. Автопротолиз воды

Реакция ионизации воды сопровождается переносом протона от одной молекулы воды к другой:

$$H_2O + H_2O \leftrightarrow H_3O^+ + OH^-$$

или упрощенно:

$$H_2O \leftrightarrow H^+ + OH^-;$$

$$K_p = \frac{[H^+][OH^-]}{[H_2O]} = 1.8 \cdot 10^{-16}; K_w = K_p \cdot [H_2O] = [H^+][OH^-] = 1.0 \cdot 10^{-14} (t = 25^{\circ}C)$$

Как следует из этих уравнений, при диссоциации воды образуется одинаковое число ионов H^+ и OH^- , т.е. в чистой воде

$$[H^+]$$
 = $[OH^-]$ = $\sqrt{K_w}$ = $\sqrt{1,0\cdot 10^{-14}}$ = $1,0\cdot 10^{-7}$ моль / л

Поскольку $pH = -lg [H^+]$ и $pOH = -lg [OH^-]$, то pH + pOH = 14,0.

В нейтральной среде pH = pOH = 7,0

В кислой среде pH < 7.0

В щелочной среде pH > 7,0

1.2. Сильные кислоты и основания

Сильными в водном растворе являются все галогеноводородные кислоты, за исключением НF, серная, хлорная, азотная кислоты и др. Вследствие полной диссоциации концентрация ионов водорода в растворах сильных кислот равна концентрации кислоты, а концентрация аниона этой кислоты не зависит от кислотности раствора.

Сильными основаниями являются водные растворы гидроксидов щелочных и щелочно-земельных металлов (например, КОН, NaOH). Поскольку они диссоциированы нацело, в растворах сильных оснований концентрация ОН⁻-ионов равна концентрации гидроксида соответствующего металла.

1.2.1. Расчеты равновесий в растворах сильных кислот и оснований

<u>Пример 1</u>. Вычислить рН 0,2 М раствора HCl.

Решение. Соляная кислота диссоциирует в водном растворе нацело:

$$HCl \rightarrow H^+ + Cl^-$$

В связи с этим:

$$[H^+] = c^0_{HCl} = 0,2$$
 моль/л

Следовательно

$$pH = -lg [H^+] = -lg 0.2 = -(-1 + 0.3) = -(-0.7) = 0.7.$$

<u>Пример 2</u>. Вычислить концентрацию ионов H^+ и pH 0,01 M раствора NaOH.

Решение. Гидроксид натрия диссоциирует в водном растворе нацело по схеме:

$$NaOH \rightarrow Na^{+} + OH^{-}$$

Поэтому

$$[OH^{-}] = c^{0}_{NaOH} = 0,01$$
 моль/л

Отсюда:

$$pOH = -\lg [OH^-] = -\lg 1 \cdot 10^{-2} = 2,0$$

 $pH = 14,0 - pOH = 14,0 - 2,0 = 12,0; [H^+] = 1,0 \cdot 10^{-12} моль/л.$

1.3. Слабые кислоты и основания

Слабые кислоты и основания диссоциированы в водном растворе лишь частично.

В водном растворе слабой кислоты существует равновесие:

которое характеризуется константой диссоциации.

$$K^{o}_{HA} = \frac{\alpha_{H^{+}} \cdot \alpha_{A^{-}}}{\alpha_{HA}} = \frac{[H^{+}][A^{-}]}{[HA]} \cdot \frac{\gamma_{H^{+}} \gamma_{A^{-}}}{\gamma_{HA}} = K_{HA} \cdot \frac{\gamma_{H^{+}} \gamma_{A^{-}}}{\gamma_{HA}},$$

где K^0_{HA} и K_{HA} — термодинамическая и концентрационная константы диссоциации, соответственно, α — активность участников реакции; γ — коэффициент активности. В первом приближении принимаем, что K^0_{HA} = K_{HA} .

С учетом величины константы кислотной диссоциации (K^a_{HA}) обозначим равновесные концентрации частиц. Как правило, через x обозначается наименьшая равновесная концентрация (Равновесные концентрации указаны под уравнением (1) диссоциации кислоты НА). Подставляем x и ($c^0_{HA} - x$) в выражение для константы диссоциации:

$$K^{a}_{HA} = \frac{x^{2}}{(c^{0}_{HA} - x)}$$
 (2)

и решаем квадратное уравнение относительно х:

$$x = [H^+] = [A^-] = -\frac{K^a_{HA}}{2} + \sqrt{(-\frac{K^a_{HA}}{2})^2 + K^a_{HA} \cdot C^0_{HA}}$$
(3)

Если $\mathrm{K^{\it a}_{HA}} \leq 10^{-4}$ и $\mathrm{c^{\it 0}_{HA}} \geq \mathrm{K^{\it a}_{HA}}$, то $\mathrm{[H^{\it +}]} << \mathrm{c^{\it 0}_{HA}}$ и $\mathrm{c^{\it 0}_{HA}} - x \approx \mathrm{c^{\it 0}_{HA}}$.

В этом случае решение уравнения (2) упрощается:

$$x = [H^{+}] = [A^{-}] = \sqrt{K^{a}_{HA} \cdot C^{0}_{HA}}$$
 (4)

Степень диссоциации кислоты (α) может быть рассчитана по уравнению:

$$\alpha = \frac{[A^{-}]}{C^{0}_{HA}} = \frac{\sqrt{K^{a}_{HA} \cdot C^{0}_{HA}}}{C^{0}_{HA}} = \sqrt{\frac{K^{a}_{HA}}{C^{0}_{HA}}}$$
(5)

Равновесную концентрацию ионов водорода в растворе слабой кислоты можно рассчитать также методом последовательных приближений:

$$[H^{+}] = \sqrt{K^{a}_{HA}(C^{0}_{HA} - [H^{+}]')}$$
 (6)

Величину $[H^+]'$ в первом приближении находят по формуле (4), затем вычисляют $[H^+]$ по (6) и снова представляют его в (6) в качестве $[H^+]'$. Для получения достаточно точного результата обычно достаточно двух приближений.

Аналогично рассчитывается pH раствора кислоты, имеющей заряд (так называемых катион-кислот), например раствора $\mathrm{NH_4}^+$.

Равновесие в растворе слабого основания

характеризуется константой основной диссоциации:

$$K_B^b = \frac{[BH^+][OH^-]}{[B]}$$

Обозначая равновесные концентрации частиц и подставляя их в выражение для константы диссоциации, получаем:

$$[OH^{-}] = [BH^{+}] = -\frac{K_{B}^{b}}{2} + \sqrt{(-\frac{K_{B}^{b}}{2})^{2} + K_{B}^{b} \cdot C_{B}^{0}}$$

Если $[OH^-] < c^0_B - x$ и $K^b_B \le 10^{-4}$, то последнее уравнение упрощается и принимает вид:

$$[OH^{-}] = [BH^{+}] = \sqrt{K_{B}^{b} \cdot C_{B}^{0}}$$

Концентрация ионов водорода в этом случае будет равна

$$[H^+] = \frac{K_w}{[OH^-]} = \frac{K_w}{\sqrt{K_B^b \cdot C_B^0}}$$

Учитывая, что

$$K^{a_{BH}^{+}} \cdot K^{b_{B}} = K_{w}$$

получаем:

$$[H^{+}] = \sqrt{\frac{K_{w}K^{a}_{BH^{+}}}{C^{0}_{B}}}$$

Здесь $K^{a}_{BH}^{+}$ — константа кислотной диссоциации частицы BH^{+} , сопряженной основанию B.

Аналогично рассчитывается pH раствора основания, имеющего заряд (например, раствора CH₃COO⁻, CN⁻ и др.).

1.3.1. Расчеты равновесий в растворах слабых кислот и оснований

<u>Пример 1</u>. Вычислить концентрацию ионов H^+ и рH в 0,1 M растворе н-масляной кислоты.

Решение. В водном растворе н-масляная кислота частично диссоциирует:

$$CH_3CH_2CH_2COOH \leftrightarrow CH_3CH_2CH_2COO^- + H^+$$

 $0,1-x$ x x

Равновесие в растворе слабой кислоты CH_3CH_2COOH характеризуется константой:

$$K^{a} = \frac{[CH_{3}CH_{2}CH_{2}COO^{-}][H^{+}]}{[CH_{3}CH_{2}CH_{2}COOH]} = 1,5 \cdot 10^{-5}$$

Обозначая равновесные концентрации частиц и подставляя их в выражение для константы диссоциации, получаем:

$$\frac{x^2}{0.1 - x} = 1.5 \cdot 10^{-5}$$

Поскольку величина $K^a{}_{CH_3CH_2COOH}$ невелика, то можно полагать, что x – мало и $0,1-x\approx 0,1$, тогда

$$x = [H^+] = \sqrt{1,5 \cdot 10^{-5} \cdot 0,1} = 1,22 \cdot 10^{-3} \text{ моль/л.}$$

$$pH = -\lg [H^+] = -\lg 1,22 \cdot 10^{-3} = 2,91$$

<u>Пример 2</u>. Вычислить концентрацию ионов H^+ и рН в 0,1 M растворе NH_4Cl .

<u>Решение</u>. В водном растворе хлорид аммония как сильный электролит диссоциирует нацело:

$$NH_4Cl \rightarrow NH_4^+ + Cl^-$$

Катион аммония вступает в протолитическое взаимодействие с молекулами воды:

$$NH_4^+ + HOH \leftrightarrow NH_3 + H_3O^+$$

 $0,1-x$ x x

Вычислим константу кислотной диссоциации иона аммония:

$$K^{a}_{NH_{4}^{+}} = \frac{[NH_{3}][H^{+}]}{[NH_{4}^{+}]} \cdot \frac{[OH^{-}]}{[OH^{-}]} = \frac{K_{w}}{K^{b}_{NH_{3}}} = \frac{1,0 \cdot 10^{-14}}{1,76 \cdot 10^{-5}} = 5,68 \cdot 10^{-10}$$

Обозначим равновесные концентрации частиц (приведены под уравнением реакции) и подставим их в выражение для $K^a_{\ NH_4^+}$:

$$\frac{x^2}{0.1-x} = 5.68 \cdot 10^{-10}$$

$$\mathbf{x} = [\mathbf{H}^{\scriptscriptstyle +}] = \sqrt{K^a_{NH_4^{\scriptscriptstyle +}} \cdot C^0_{NH_4^{\scriptscriptstyle +}}} = \sqrt{5,\!68\cdot 10^{^{\scriptscriptstyle -10}}\cdot 0,\!1} = 7,\!54\cdot 10^{^{\scriptscriptstyle -6}}\,\mathrm{моль/\pi};\,\mathrm{pH} = 5,\!12.$$

<u>Пример 3</u>. Вычислить pH раствора, полученного при смешении 100 мл 0,2 М раствора CH₃COOH и 100 мл 0,1 М раствора HCl.

<u>Решение</u>. После смешения растворов концентрации HCl и CH₃COOH будут равны:

$$C_{CH_3COOH} = \frac{V(CH_3COOH) \cdot C_{CH_3COOH}^{ucx}}{V_{cM}} = \frac{100 \cdot 0.2}{200} = 0.1$$
 моль/л;

$$C_{HCl} = \frac{V(HCl) \cdot C_{HCl}^{ucx}}{V_{cm}} = \frac{100 \cdot 0,1}{200} = 0,05$$
 моль/л.

Здесь $V_{\text{см}}-$ общий объем полученной смеси кислот.

Равновесия в растворе смеси сильной и слабой кислот запишутся:

CH₃COOH
$$\leftrightarrow$$
 CH₃COO⁻ + H⁺
0,1 - x 0,05 + x
HCl \rightarrow H⁺ + Cl⁻
0.05 0.05

Равновесная концентрация ионов H^+ будет складываться как (0.05 + x).

$$K^{a}_{CH_{3}COOH} = \frac{[CH_{3}COO^{-}][H^{+}]}{[CH_{3}COOH]} = 1,74 \cdot 10^{-5}$$
$$\frac{x(x+0,05)}{0.1-x} = 1,74 \cdot 10^{-5}$$

Можно полагать, что x << 0.05, тогда $x + 0.05 \approx 0.05$ и $0.1 - x \approx 0.1$.

Следовательно, последнее уравнение можно упростить:

$$\frac{0.05x}{0.1} = 1.74 \cdot 10^{-5}$$

 $x = [CH_3COO^-] = 3,48 \cdot 10^{-5} \text{ моль/л.}$

 $[H^+] = 0.05$ моль/л; pH 1.3.

Таким образом, концентрация ионов водорода в смеси сильной и слабой кислот практически целиком определяется концентрацией сильной кислоты.

<u>Пример 4</u>. Вычислить рН 0,1 М раствора этаноламина.

<u>Решение</u>. Этаноламин как слабое основание в водном растворе частично диссоциирует:

Равновесие в растворе слабого основания характеризуется константой основной диссоциации:

$$K_B^b = \frac{[CH_2CH_2OHNH_3^+][OH^-]}{[CH_2CH_2OHNH_2]} = 1.8 \cdot 10^{-5}$$

Подставляя равновесные концентрации частиц в выражение для константы K^b_B , получаем:

$$\frac{x^2}{0.1 - x} = 1.8 \cdot 10^{-5}$$

Поскольку $x \ll 0.1$, то $0.1 - x \approx 0.1$

Отсюда

$$x = [OH^-] = \sqrt{K_B^b \cdot C_B^0} = \sqrt{1,8 \cdot 10^{-5} \cdot 0,1} = 1,34 \cdot 10^{-3} \text{ моль/л}$$

и [H⁺] =
$$\frac{K_w}{[OH^-]}$$
 = $\sqrt{\frac{K_w \cdot K^a{}_{BH^+}}{C^0{}_B}}$ = $\sqrt{\frac{1,0 \cdot 10^{-14} \cdot 5,56 \cdot 10^{-10}}{0,1}}$ = 7,46·10⁻¹² моль/л

pH = 11,13.

Пример 5. Вычислить рН 0,1 М раствора ацетата натрия.

<u>Решение</u>. Ацетат натрия как сильный электролит в водном растворе диссоциирует нацело:

Ацетат-ион как анион слабой кислоты взаимодействует с молекулами воды:

$$CH_3COO^- + HOH \leftrightarrow CH_3COOH + OH^-$$

 $0.1-x$ x x

Вычислим константу основной диссоциации ацетат-иона:

$$K^{b}_{CH_{3}COO^{-}} = \frac{[CH_{3}COOH][OH^{-}]}{[CH_{3}COO^{-}]} \cdot \frac{[H^{+}]}{[H^{+}]} = \frac{K_{w}}{K^{a}_{CH_{3}COOH}} = \frac{1,0 \cdot 10^{-14}}{1,74 \cdot 10^{-5}} = 5,75 \cdot 10^{-10}$$

Подставим равновесные концентрации частиц в выражение для $K^b{}_{C\!H_3COO^-}$ и получим:

$$\frac{x^2}{0.1 - x} = 5,75 \cdot 10^{-10}$$

После упрощений решаем уравнение относительно x:

$$x = [\text{OH}^-] = \sqrt{K_{CH_3COO^-}^b \cdot C^0_{CH_3COO^-}} = \sqrt{5,75 \cdot 10^{-10} \cdot 0,1} = 7,58 \cdot 10^{-6} \text{ моль/л.}$$

Следовательно, pOH = 5,12, pH = 8,88.

1.4. Многоосновные кислоты и многопротонные основания

Многоосновные кислоты диссоциируют в растворе ступенчато:

Отсюда:

$$K_1^a = \frac{x^2}{(C^0_{H_2A} - x)}$$

Поскольку $K_2 <<< K_1$, то $C^0_{H_2A}$ - $x \approx C^0_{H_2A}$

В этом случае:

$$[H^+] = \sqrt{K_1^a \cdot C^0}_{H_2A}$$
, T.e.

концентрация ионов водорода в растворе многоосновной кислоты определяется диссоциацией кислоты по I ступени.

Далее, с учетом того, что $x + y \approx x$ и $x - y \approx x$

$$K^{a}_{2} = \frac{(x+y)y}{(x-y)} = y$$
, T.e. $[A^{2-}] = K^{a}_{2}$.

Концентрация аниона, образующегося при диссоциации кислоты по II ступени, равна константе диссоциации кислоты по второй ступени.

Выведенные уравнения пригодны и для расчета равновесий в растворах многопротонных оснований. Большое практическое значение имеют расчеты

равновесий в растворах, содержащих анионы слабых многоосновных кислот, напр. ${\rm CO_3}^{2-}$, ${\rm PO_4}^{3-}$ и др.

Так, в растворе Na₂CO₃ имеют место следующие ступенчатые равновесия:

$$CO_3^{2-} + HOH \leftrightarrow HCO_3^{-} + OH^{-};$$
 $K_1^b = \frac{[HCO_3^{-}][OH^{-}]}{[CO_3^{2-}]} = \frac{K_w}{K_2^a}$
 $HCO_3^{-} + HOH \leftrightarrow H_2CO_3 + OH^{-};$ $K_2^b = \frac{[H_2CO_3][OH^{-}]}{[HCO_3^{-}]} = \frac{K_w}{K_1^a}$

Следовательно, в этом случае

$$[OH^{-}] = \sqrt{\frac{K_{w}}{K_{2}^{a}} \cdot C_{conu}}$$
 и $[H_{2}CO_{3}] = \frac{K_{w}}{K_{1}^{a}}$

Большое практическое значение имеет также вопрос о влиянии рН раствора на концентрацию продуктов ступенчатой диссоциации многоосновных кислот. В качестве примера рассмотрим диссоциацию ортофосфорной кислоты в водном растворе:

$$H_{3}PO_{4} \leftrightarrow H_{2}PO_{4}^{-} + H^{+}; \qquad K_{1}^{a} = \frac{[H_{2}PO_{4}^{-}][H^{+}]}{[H_{3}PO_{4}]}.$$

$$H_{2}PO_{4}^{-} \leftrightarrow HPO_{4}^{2-} + H^{+}; \qquad K_{2}^{a} = \frac{[HPO_{4}^{2-}][H^{+}]}{[H_{2}PO_{4}^{-}]}.$$

$$HPO_{4}^{2-} \leftrightarrow PO_{4}^{3-} + H^{+}; \qquad K_{3}^{a} = \frac{[PO_{4}^{3-}][H^{+}]}{[HPO_{4}^{2-}]}.$$

Уравнение материального баланса для этой системы запишется как:

$$C^{0}_{H_{3}PO_{4}} = [H_{3}PO_{4}] + [H_{2}PO_{4}] + [HPO_{4}] + [PO_{4}]$$

Если молярную долю отдельной частицы обозначить через X, то

$$X_{H_3PO_4} + X_{H_2PO_4^-} + X_{HPO_4^{2-}} + X_{PO_4^{3-}} = 1$$

а равновесную концентрацию каждой частицы можно представить как:

$$[H_3PO_4] = X_{H_3PO_4} \cdot C^0_{H_3PO_4};$$

$$[H_{2}PO_{4}^{-}] = X_{H_{2}PO_{4}^{-}} \cdot C^{0}_{H_{3}PO_{4}};$$

$$[HPO_{4}^{2-}] = X_{HPO_{4}^{2-}} \cdot C^{0}_{H_{3}PO_{4}};$$

$$[PO_{4}^{3-}] = X_{PO_{4}^{3-}} \cdot C^{0}_{H_{3}PO_{4}}.$$

Теперь легко выразить молярные доли частиц, являющихся продуктами диссоциации фосфорной кислоты:

$$X_{H_{3}PO_{4}} = \frac{[H_{3}PO_{4}]}{C^{0}_{H_{3}PO_{4}}} = \frac{[H_{3}PO_{4}]}{[H_{3}PO_{4}] + [H_{2}PO_{4}^{-}] + [HPO_{4}^{-2}] + [PO_{4}^{-3}]};$$

$$X_{H_{2}PO_{4}^{-}} = \frac{[H_{2}PO_{4}^{-}]}{C^{0}_{H_{3}PO_{4}}} = \frac{[H_{2}PO_{4}^{-}]}{[H_{3}PO_{4}] + [H_{2}PO_{4}^{-}] + [HPO_{4}^{-2}] + [PO_{4}^{-3}]};$$

$$X_{HPO_{4}^{-2}} = \frac{[HPO_{4}^{-2}]}{C^{0}_{H_{3}PO_{4}}} = \frac{[HPO_{4}^{-2}]}{[H_{3}PO_{4}] + [H_{2}PO_{4}^{-}] + [HPO_{4}^{-2}] + [PO_{4}^{-3}]};$$

$$X_{PO_{4}^{-3}} = \frac{[PO_{4}^{-3}]}{C^{0}_{H_{3}PO_{4}}} = \frac{[PO_{4}^{-3}]}{[H_{3}PO_{4}] + [H_{2}PO_{4}^{-}] + [HPO_{4}^{-2}] + [PO_{4}^{-3}]}.$$

Равновесные концентрации частиц $H_2PO_4^-$, HPO_4^{2-} и PO_4^{3-} представляем следующими уравнениями, используя значения ступенчатых констант кислотной диссоциации кислоты:

$$[H_{2}PO_{4}^{-}] = K_{1}^{a} \frac{[H_{3}PO_{4}]}{[H^{+}]};$$

$$[HPO_{4}^{2-}] = K_{2}^{a} \frac{[H_{2}PO_{4}^{-}]}{[H^{+}]} = K_{1}^{a} K_{2}^{a} \cdot \frac{[H_{3}PO_{4}]}{[H^{+}]^{2}};$$

$$[PO_{4}^{3-}] = K_{3}^{a} \frac{[HPO_{4}^{2-}]}{[H^{+}]} = K_{1}^{a} K_{2}^{a} K_{3}^{a} \cdot \frac{[H_{3}PO_{4}]}{[H^{+}]^{3}}.$$

Тогда уравнение материального баланса примет вид:

$$C^{0}_{H_{3}PO_{4}} = [H_{3}PO_{4}](1 + \frac{K_{1}^{a}}{[H^{+}]} + \frac{K_{1}^{a}K_{2}^{a}}{[H^{+}]^{2}} + \frac{K_{1}^{a}K_{2}^{a}K_{3}^{a}}{[H^{+}]^{3}}).$$

Отсюда:

$$X_{H_{3}PO_{4}} = \frac{[H_{3}PO_{4}]}{[H_{3}PO_{4}](1 + \frac{K_{1}^{a}}{[H^{+}]} + \frac{K_{1}^{a}K_{2}^{a}}{[H^{+}]^{2}} + \frac{K_{1}^{a}K_{2}^{a}K_{3}^{a}}{[H^{+}]^{3}})} = \frac{[H^{+}]^{3}}{[H^{+}]^{3} + [H^{+}]^{2} \cdot K_{1}^{a} + [H^{+}] \cdot K_{1}^{a}K_{2}^{a} + K_{1}^{a}K_{2}^{a}K_{3}^{a}}$$

Общий для всех уравнений знаменатель обозначим как

$$D = [H^{+}]^{3} + [H^{+}]^{2} \cdot K_{1}^{a} + [H^{+}] \cdot K_{1}^{a} \cdot K_{2}^{a} + K_{1}^{a} \cdot K_{2}^{a} \cdot K_{3}^{a}$$

тогда

$$X_{H_{2}PO_{4}^{-}} = \frac{[H_{2}PO_{4}^{-}]}{[H_{3}PO_{4}](1 + \frac{K_{1}^{a}}{[H^{+}]} + \frac{K_{1}^{a}K_{2}^{a}}{[H^{+}]^{2}} + \frac{K_{1}^{a}K_{2}^{a}K_{3}^{a}}{[H^{+}]^{3}})} = \frac{K_{1}^{a}[H^{+}]^{3}/[H^{+}]}{[H^{+}]^{3} + [H^{+}]^{2} \cdot K_{1}^{a} + [H^{+}] \cdot K_{1}^{a}K_{2}^{a} + K_{1}^{a}K_{2}^{a}K_{3}^{a}} = \frac{K_{1}^{a}[H^{+}]^{2}}{D}.$$

После аналогичных преобразований получаем также:

$$X_{HPO_4^{2-}} = \frac{K_1^a K_2^a [H^+]}{D};$$

$$X_{PO_4^{3-}} = \frac{K_1^a K_2^a K_3^a}{D}.$$

Полученные уравнения позволяют рассчитать долю каждой частицы, зная pH раствора и константы диссоциации кислоты. Результаты расчета удобно представить графически в координатах X_i – pH, в виде так называемой диаграммы равновесий.

На рис. 1 представлена диаграмма равновесий в водных растворах фосфорной кислоты.

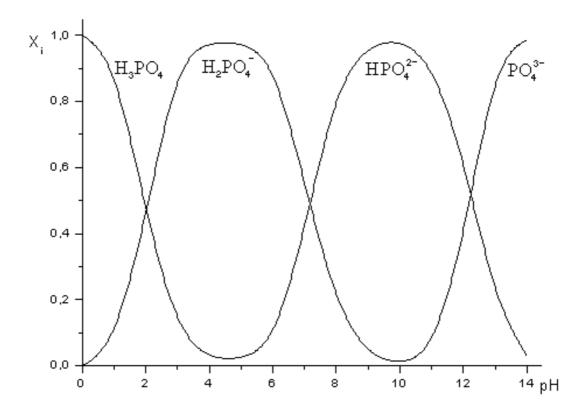


Рис. 1. Диаграмма равновесий в водном растворе Н₃РО₄.

Диаграмма позволяет выбрать области максимального накопления каждой частицы, указать значения рН, при которых реализуются максимальные буферные емкости соответствующих буферных растворов и т.д.

1.4.1. Расчеты равновесий в растворах многоосновных кислот.

<u>Пример 8</u>. Вычислить концентрацию продуктов ступенчатой диссоциации в $0,1\,\mathrm{M}$ растворе $\mathrm{H_3PO_4}$. Найти степень диссоциации $\mathrm{H_3PO_4}$ в этом растворе.

<u>Решение</u>. Фосфорная кислота в водном растворе диссоциирует по трем ступеням:

$$H_{3}PO_{4} \leftrightarrow H_{2}PO_{4}^{-} + H^{+};$$

$$K_{1}^{a} = \frac{[H_{2}PO_{4}^{-}][H^{+}]}{[H_{3}PO_{4}]} = 7,1 \cdot 10^{-3}$$

$$H_{2}PO_{4}^{-} \leftrightarrow HPO_{4}^{2-} + H^{+};$$

$$K_{2}^{a} = \frac{[HPO_{4}^{2-}][H^{+}]}{[H_{2}PO_{4}^{-}]} = 6,2 \cdot 10^{-8}$$

$$\text{HPO}_4^{2-} \leftrightarrow \text{PO}_4^{3-} + \text{H}^+;$$
 $K_3^a = \frac{[PO_4^{3-}][H^+]}{[HPO_4^{2-}]} = 5.0 \cdot 10^{-13}$

Поскольку значения K_1 и K_2 отличаются значительно (примерно на 5 порядков), то концентрацию ионов водорода можно вычислить с учетом диссоциации H_3PO_4 только по первой ступени.

$$\frac{x^2}{0.1 - x} = K_1^a = 7.1 \cdot 10^{-3}$$

Решая полное квадратное уравнение

$$x^2 + 7.1 \cdot 10^{-3} \cdot x - 7.1 \cdot 10^{-4} = 0$$

получаем:

$$x = [H^+] = -\frac{7,1 \cdot 10^{-3}}{2} + \sqrt{\frac{(7,1 \cdot 10^{-3})^2}{2} + 7,1 \cdot 10^{-4}} = 2,33 \cdot 10^{-2} \text{ моль/л.}$$

Таким образом,

$$[H_2PO_4^-] = [H^+] = 2,33 \cdot 10^{-2} \text{ моль/л}.$$

Концентрация аниона HPO_4^{2-} , образующегося по II ступени диссоциации, численно равна величине K_2^a , т.е.

$$[\mathrm{HPO_4}^{2-}] = \mathrm{K_2}^a = 6,2 \cdot 10^{-8} \ \mathrm{моль/л}.$$

Зная равновесные концентрации ионов H^+ и HPO_4^{2-} , находим концентрацию иона PO_4^{3-} :

$$[PO_4^{3-}] = K_3^a \frac{[HPO_4^{2-}]}{[H^+]} = 5,0 \cdot 10^{-13} \frac{6,2 \cdot 10^{-8}}{2,33 \cdot 10^{-2}} = 1,33 \cdot 10^{-18} \text{ моль/ л.}$$

Степень диссоциации Н₃РО₄ определяется как

$$\alpha_1 = \frac{[H_2 P O_4^{-1}]}{C_{H_3 P O_4}^0} = \frac{2,33 \cdot 10^{-2}}{0,1} = 0,233$$
 или 23,3%.

<u>Пример 2</u>. Вычислить pH 0,1 M раствора $Pb(NO_3)_2$.

<u>Решение</u>. Соль $Pb(NO_3)_2$ в водном растворе практически нацело диссоциирована на ионы, т.е. $C^0_{Pb^{2+}}=0,1$ моль/л.

Равновесия в водном растворе соли можно представить следующими уравнениями:

$$Pb^{2+} + HOH \leftrightarrow PbOH^{+} + H^{+};$$
 (1)

$$Pb^{2+} + HOH \leftrightarrow PbOH^{+} + H^{+};$$

$$0,1-x \qquad x \qquad x$$

$$PbOH^{+} + HOH \leftrightarrow Pb(OH)_{2} + H^{+}.$$
(1)

$$PbOH^{+} + HOH \leftrightarrow Pb(OH)_{2} + H^{+}.$$
 (2)

Вычислим численные значения констант равновесия этих процессов:

$$K_1^a = \frac{[PbOH^+][H^+]}{[Pb^{2+}]} \cdot \frac{[OH^-]}{[OH^-]} = \beta_{PbOH^+} \cdot K_w = 3,3 \cdot 10^7 \cdot 1,0 \cdot 10^{-14} = 3,3 \cdot 10^{-7};$$

$$K_2^a = \frac{[Pb(OH)_2][H^+]}{[PbOH^+]} \cdot \frac{[OH^-]}{[OH^-]} = \chi_{Pb(OH)_2} \cdot K_w = 1,05 \cdot 10^3 \cdot 1,0 \cdot 10^{-14} = 1,05 \cdot 10^{-11}.$$

Поскольку ${K_1}^a>> {K_2}^a,$ при расчете равновесной концентрации ионов водорода в растворе соли можно ограничиться рассмотрением процесса (1).

Подставляя равновесные концентрации в выражение для $K_1{}^a$, получаем:

$$\frac{x^2}{0.1-x} = 3.3 \cdot 10^{-7}$$

Так как величина K_1^a невелика, можно предположить, что $0,1-x\approx 0,1$.

Отсюда

$$x = [H^+] = \sqrt{3,3 \cdot 10^{-7} \cdot 0,1} = 1,82 \cdot 10^{-4} \text{ моль/л};$$

 $pH = -\lg 1,82 \cdot 10^{-4} = 4 - 0,26 = 3,74.$

Очевидно также, что

 $[Pb(OH)_2] = K_2^a = 1,05 \cdot 10^{-11}$ моль/л, т.к. из уравнения (1) следует, что $[PbOH^+] =$ $[H^+].$

1.5. Буферные растворы

Раствор, содержащий слабый протолит (кислоту или основание) и его соль (сопряженное основание или сопряженную кислоту), называется буферным. При введении в такой раствор небольших добавок сильной кислоты или сильного основания изменения рН не происходит вообще или оно очень невелико. Очень немного изменяется рН буферного раствора и при разбавлении.

Способность буферного раствора поддерживать постоянное значение pH определяется его буферной емкостью. Буферная емкость характеризуется количеством вещества (моль) сильной кислоты или сильного основания, которое требуется ввести в 1 л буферного раствора, чтобы изменить его pH на единицу. Максимальная буферная емкость реализуется при одинаковой концентрации компонентов. В этих условиях $pH = pK_{HA}^a$ или $pOH = pK_B^b$ ($pH = 14 - pK_B^b$).

Ацетатный буфер

Равновесия в растворе ацетатного буфера можно представить следующим образом:

$$\begin{array}{ccccc} CH_3COOH & \leftrightarrow & CH_3COO^- & + & H^+ \\ c_{\kappa} - x & x & x & x \\ CH_3COOM & \to & CH_3COO^- & + & M^+ \\ c_{c} & c_{c} & c_{c} \end{array}$$

Суммарное уравнение запишется как:

Константа, управляющая этим равновесием:

$$K^{a}_{CH_{3}COOH} = \frac{[CH_{3}COO^{-}][H^{+}]}{[CH_{3}COOH]} = 1,74 \cdot 10^{-5}$$

Подставляя равновесные концентрации частиц в выражение для $K^a{}_{CH_3COOH}$, получаем:

$$[H^+] = K^a_{CH_3COOH} \cdot \frac{[CH_3COOH]}{[CH_3COO^-]} = K^a_{CH_3COOH} \cdot \frac{(C_{\kappa ucn} - x)}{(C_{conv} + x)}$$

Поскольку x – мало, то $c_{\text{кисл}} - x \approx c_{\text{кисл}}$

$$c_{\text{соли}} + \chi \approx c_{\text{соли}}$$

$$[H^+] = K^a_{CH_3COOH} \cdot \frac{C_{\kappa ucn}}{C_{conu}}; pH = pK^a + \lg \frac{C_{conu}}{C_{\kappa ucn}}.$$

По этой формуле можно рассчитать величину рН, зная состав буферного раствора или найти состав раствора, который обеспечит заданное значение рН.

Аммонийный буфер

Равновесие в аммонийном буферном растворе можно представить как:

или

$$NH_3 + HOH \leftrightarrow NH_4^+ + OH^-$$

 $c_{och} - x$ $x + c_c$ x

Запишем выражение для константы основной диссоциации NH_3 в водном растворе и приведем ее численное значение. С учетом величины $K^b{}_{N\!H_3}$ обозначим равновесные концентрации частиц и подпишем их под соответствующим уравнением:

$$K^{b}_{NH_{3}} = \frac{[NH_{4}^{+}][OH^{-}]}{[NH_{3}]} = 1,76 \cdot 10^{-5}$$

Подставим равновесные концентрации в выражение для $K^b{}_{N\!H_3}$ и выразим $[\mathrm{OH}^-]$:

$$[OH^{-}] = K^{b}_{NH_{3}} \cdot \frac{[NH_{3}]}{[NH_{4}^{+}]} = K^{b}_{NH_{3}} \cdot \frac{(C_{och} - x)}{(C_{conu} + x)}$$

Поскольку x — мало, то

$$[OH^{-}] = K^{b}_{NH_{3}} \cdot \frac{C_{och}}{C_{conu}} \quad u \quad pH = 14 - pK^{b} - \lg \frac{C_{conu}}{C_{och}}.$$

1.5.1. Расчеты равновесий в буферных растворах

<u>Пример 1</u>. Вычислить $[H^+]$, $[OH^-]$ и pH раствора, полученного путем смешения 50 мл 0,5 M раствора уксусной кислоты и 200 мл 0,5 M раствора ацетата натрия. <u>Решение</u>.

После смешения растворов концентрации компонентов ацетатного буферного раствора будут равны:

$$C_{CH_3COOH} = \frac{0.5 \cdot 50}{250} = 0.1 \text{ моль/л};$$

$$C_{CH_3COONa} = \frac{0.5 \cdot 200}{250} = 0.4$$
 моль/л.

С учетом полученных величин обозначим равновесные концентрации компонентов буферной смеси:

$$CH_{3}COOH \leftrightarrow CH_{3}COO^{-} + H^{+}$$

$$0,1-x \qquad x \qquad x$$

$$CH_{3}COONa \rightarrow CH_{3}COO^{-} + Na^{+}$$

$$0,4 \qquad 0,4$$

$$K^{a}_{CH_{3}COOH} = \frac{[CH_{3}COO^{-}][H^{+}]}{[CH_{3}COOH]} = 1,74 \cdot 10^{-5}$$

Подставляя равновесные концентрации частиц в выражение для $K^a{}_{CH_3COOH}$, получим:

$$\frac{x(0.4+x)}{(0.1-x)} = 1.74 \cdot 10^{-5}$$

Поскольку x – мало, то $0,1-x\approx 0,1$

$$0,4+x\approx 0,4$$
, тогда

$$\frac{x \cdot 0.4}{0.1} = 1.74 \cdot 10^{-5}$$

$$x = [H^+] = 4,35 \cdot 10^{-6}$$
 моль/л

$$pH = - lg 4,35 \cdot 10^{-6} = 5,36$$
; $pOH = 14,0 - 5,36 = 8,64$ $[OH^-] = 2,29 \cdot 10^{-9}$ моль/л.

<u>Пример 2</u>. Вычислить, сколько граммов твердого ацетата калия необходимо растворить в 50 мл 0,04 М раствора уксусной кислоты, чтобы получить раствор с рН 5,4?

<u>Решение</u>. Вычислим концентрацию ионов водорода, соответствующую pH = 5,4: $lg[H^+] = -5,4$; $[H^+] = 3,98 \cdot 10^{-6}$ моль/л

Обозначим равновесные концентрации частиц и подпишем их под соответствующим равновесием:

CH₃COOH
$$\leftrightarrow$$
 CH₃COO⁻ + H⁺
0,04 - 3,98·10⁻⁶ x + 3,98·10⁻⁶ 3,98·10⁻⁶

$$K^{a}_{CH_{3}COOH} = \frac{[CH_{3}COO^{-}][H^{+}]}{[CH_{3}COOH]} = 1,74 \cdot 10^{-5}$$

Подставляя равновесные концентрации в выражение для $K^{a}{}_{CH_{3}COOH}$, получим:

$$\frac{(x+3.98\cdot10^{-6})3.98\cdot10^{-6}}{0.04-3.98\cdot10^{-6}} = 1.74\cdot10^{-5}$$

Так как $x >> 3,98\cdot10^{-6}$, после упрощений имеем:

$$\frac{x \cdot 3,98 \cdot 10^{-6}}{0.04} = 1,74 \cdot 10^{-5}; \qquad x = 0,175 \text{ моль/л}$$

Принимая во внимание, что молярная масса CH₃COOK равна 98,143г/моль, находим:

$$m_{CH_3COOK} = \frac{0,175 \cdot 50}{1000} \cdot 98,143 = 0,858 \ \varepsilon.$$

<u>Пример 3</u>. Вычислить pH раствора, полученного при смешении 30 мл 0,2 M раствора KH_2PO_4 и 10 мл 0,1 M HCl.

<u>Решение</u>. Вычислим концентрацию каждого компонента в растворе после смешения.

$$C^{0}_{KH_{2}PO_{4}} = \frac{C^{ucx}_{CH_{3}COOH} \cdot V_{KH_{2}PO_{4}}}{V_{cM}} = \frac{30 \cdot 0.2}{40} = 0.150$$
 моль/л;

$$C^{0}_{HCl} = \frac{C^{ucx}_{HCl} \cdot V_{HCl}}{V_{cm}} = \frac{10 \cdot 0.1}{40} = 0.0250$$
 моль/л.

Здесь V_{cm} = 30 мл + 10 мл = 40 мл – общий объем раствора после смешения.

Обозначим равновесные концентрации частиц, участвующих в реакции:

$$H_2PO_4^- + H^+ \leftrightarrow H_3PO_4$$

0,150 - (0,025-x) x 0,025-x

Константа равновесия этого процесса запишется как:

$$K_p = \frac{[H_3 P O_4]}{[H_2 P O_4]} = \frac{1}{K_1^a} = \frac{1}{7,0 \cdot 10^{-3}} = 1,41 \cdot 10^2$$

Подставляем равновесные концентрации в выражение константы равновесия:

$$\frac{(0.025 - x)}{(0.125 + x)x} = 1.41 \cdot 10^2$$

Отсюда:

$$0.025 - x = 17.6x + 141x^2$$
;

$$141x^2 + 18,6x - 0,025 = 0.$$

Решаем неприведенное квадратное уравнение относительно х:

$$x = \frac{-18,60 + \sqrt{345,96 + 14,08}}{281.6} = \frac{-18,60 + 18,97}{281.6} = 1,33 \cdot 10^{-3}$$
 моль / л.

pH = 2.88.

<u>Пример 4</u>. Вычислить, какой объем 0,1 M раствора КОН нужно добавить к 100 мл 0,2 M KH_2PO_4 , чтобы получить раствор с pH 11,5?

<u>Решение</u>. Вычислим концентрацию ионов водорода, соответствующую рН 11,5:

$$lg[H^+]$$
 = -11,5 = $\overline{12}$,5, отсюда $[H^+]$ = 3,16·10⁻¹² моль/л.

При добавлении раствора КОН к раствору К₂HPO₄ образуется эквивалентное количество фосфата калия по реакции:

$$K_2HPO_4 + KOH = K_3PO_4 + H_2O$$

Следовательно, после смешения двух исходных растворов образуется буферная смесь, в которой более протонированная частица HPO_4^{2-} будет выступать в качестве кислоты, а PO_4^{3-} – как соответствующее ей сопряженное основание.

Обозначим равновесные концентрации частиц в полученной системе:

$$\frac{\text{HPO}_4^{2-}}{0.2 \cdot 100 - 0.1 V_x} \longleftrightarrow \frac{\text{PO}_4^{3-}}{100 + V_x} + 3.16 \cdot 10^{-12} \times 3.16 \cdot 10^{-12}$$

Здесь $\frac{0,1V_x}{100+V_x}$ — концентрация соли, образовавшейся при добавлении раствора щелочи объемом V_x (с учетом разбавления);

$$\frac{0,2\cdot 100}{100+\,V_{x}}$$
 — исходная концентрация $\mathrm{HPO_{4}^{2-}}\,\mathrm{B}$ смеси;

 $100+V_x$ – общий объем смеси.

Величиной 3,16·10⁻¹² по сравнению с $\frac{0,1V_x}{100+V_x}$ можно пренебречь.

Подставляя равновесные концентрации частиц в выражение для константы равновесия:

$$K^{a}_{HPO_{4}^{2-}} = K^{a}_{H_{3}PO_{4(3)}} = \frac{[H^{+}][PO_{4}^{3-}]}{[HPO_{4}^{2-}]} = 5,0 \cdot 10^{-13}$$

После несложных преобразований имеем:

$$\frac{3,16 \cdot 10^{-12} \cdot 0,1 V_x}{0,2 \cdot 100 - 0,1 V_x} = 5,0 \cdot 10^{-13}$$
$$3,16 \cdot 10^{-13} \cdot V_x = 1,0 \cdot 10^{-11} - 0,5 \cdot 10^{-13} \cdot V_x$$
$$V_x = \frac{1,0 \cdot 10^{-11}}{3,66 \cdot 10^{-13}} = 27,3 \text{ мл.}$$

<u>1.6. Амфолиты</u>

Представителями амфолитов могут быть: кислые соли (NaHCO₃, KH₂PO₄, K_2HPO_4 , NaHSO₃ и др.).

Например, $HC_2O_4^-$ -ион наряду с кислотной диссоциацией может выступать и как акцептор протона:

$$HC_{2}O_{4}^{-} \leftrightarrow C_{2}O_{4}^{2-} + H^{+}; K_{2}^{a} = \frac{[H^{+}][C_{2}O_{4}^{2-}]}{[HC_{2}O_{4}^{-}]};$$

$$HC_{2}O_{4}^{-} + H^{+} \leftrightarrow H_{2}C_{2}O_{4}; \frac{1}{K_{1}^{a}} = \frac{[H_{2}C_{2}O_{4}]}{[H^{+}][HC_{2}O_{4}^{-}]}.$$

$$H_{2}O \leftrightarrow H^{+} + OH^{-}; K_{w} = [H^{+}][OH^{-}]$$

Отсюда:

$$[H^{+}] = [C_{2}O_{4}^{2-}] + [OH^{-}] - [H_{2}C_{2}O_{4}];$$

$$[H^{+}] = \frac{K_{2}^{a}[HC_{2}O_{4}^{2-}]}{[H^{+}]} + \frac{K_{w}}{[H^{+}]} - \frac{[H^{+}][HC_{2}O_{4}^{-}]}{K_{1}^{a}}.$$

Умножим левую и правую части последнего уравнения на $[H^+]$ и сделаем простые преобразования

$$[H^{+}]^{2}(1+\frac{[HC_{2}O_{4}^{-}]}{K_{1}^{a}}) = K_{w} + K_{2}^{a}[HC_{2}O_{4}^{-}]$$

Поскольку $[HC_2O_4^-] \approx c_{\text{conu}}$, то

$$[H^+]^2 (1 + \frac{C_{conu}}{K_1^a}) = K_w + K_2^a \cdot C_{conu}$$

$$[H^{+}] = \sqrt{\frac{K_{1}^{a}(K_{w} + K_{2}^{a} \cdot C_{conu})}{K_{1}^{a} + C_{conu}}}.$$

Так как $c_{\text{соли}} >> K_1$ и $K_2{}^a \cdot c_{\text{соли}} >> K_{\text{w}}$,

то
$$[H^+] = \sqrt{K_1^a \cdot K_2^a}$$
 и $pH = \frac{pK_1^a + pK_2^a}{2}$

В растворах гидросолей:

$$[OH^{-}] = \sqrt{K_{1}^{b} \cdot K_{2}^{b}} \times pOH = \frac{pK_{1}^{b} + pK_{2}^{b}}{2}$$

Расчет рН в растворе кислой соли состава МНА (достаточно большой концентрации) производится по формуле:

$$pH = \frac{1}{2} (pK_1 + pK_2),$$

а состава М₂НА – по следующему соотношению:

$$pH = \frac{1}{2} (pK_2 + pK_3).$$

<u>Гл. 2. Реакции осаждения и растворения малорастворимых</u> <u>соединений</u>

В аналитической химии реакции осаждения малорастворимых соединений используются для обнаружения ионов (обнаружение свинца в виде PbI_2), для разделения ионов (осаждение сульфатов $CaSO_4$, $BaSO_4$, $SrSO_4$, осаждение гидроксидов $Fe(OH)_3$, $Mg(OH)_2$ и пр.).

2.1. Равновесие в системе раствор-осадок

В результате реакции осаждения образуется гетерогенная двухфазная система раствор—осадок:

растворение
$$\rightarrow$$
 $M_m A_n \downarrow \longleftarrow$ ============= \rightarrow $m M^{n+} + n A^{m-}$ (2.1) \leftarrow осаждение

При установившемся равновесии в насыщенном растворе малорастворимого, полностью диссоциирующего электролита при данной температуре, давлении и ионной силе произведение концентраций (активностей) его ионов в степенях, соответствующих стехиометрическим коэффициентам, есть величина постоянная, называемая произведением растворимости – ПР.

Различают *термодинамическое произведение растворимости* ΠP^{θ} :

$$\Pi P^0 = \alpha \frac{m}{M^{n+}} \cdot \alpha \frac{n}{A^{m-}}$$
(2.2)

где $\alpha_{M^{n+}}$, $\alpha_{A^{m-}}$ – активности ионов M^{n+} и A^{m-} ;

и концентрационное произведение растворимости:

$$\Pi P = [M^{n+}]^m [A^{m-}]^n \tag{2.3}$$

где $[M^{n+}]$, $[A^{m-}]$ – концентрации ионов M^{n+} и A^{m-}

Так как $\alpha_{M^{n+}} = [M^{n+}] \cdot \gamma_{M^{n+}}$, $\alpha_{A^{m-}} = [A^{m-}] \cdot \gamma_{A^{m-}} (\gamma_{M^{n+}}, \gamma_{A^{m-}} - \kappa o \circ \phi \phi$ ициенты активности), то

$$\Pi P^{0} = [M^{n+}][A^{m-}] \cdot \gamma_{M^{n+}}^{m} \cdot \gamma_{A^{m-}}^{n} = \Pi P \cdot \gamma_{M^{n+}}^{m} \cdot \gamma_{A^{m-}}^{n}.$$

С увеличением ионной силы ($I = \frac{1}{2} \sum cz^2$) коэффициенты активности уменьшаются

и
$$\Pi P = \Pi P^0 / \gamma \frac{m}{M^{n_+}} \cdot \gamma \frac{n}{A^{m_-}}$$
 увеличивается.

Коэффициенты активности ионов могут быть рассчитаны по уравнению Девис для $I=0,1\div0,8$:

$$\lg \gamma_i = -Az_i^2 (\frac{\sqrt{I}}{1+\sqrt{I}} - 0.2 \cdot I) \quad (A = 0.509 \quad npu \quad 25^0 C)$$

Тогда

$$\lg \Pi P^0 = \lg \Pi P + m \lg \gamma_{M^{n+}} + n \lg \gamma_{M^{n-}}.$$

Подставив в это уравнение $\lg \gamma_i$, получаем:

$$\lg \Pi P^{0} = \lg \Pi P - Az_{i}^{2} \left(\frac{\sqrt{I}}{1+\sqrt{I}} - 0, 2 \cdot I\right), \text{ где}$$

$$Z_{i}^{2} = mZ_{M^{n+}}^{2} + nZ_{A^{m-}}^{2}, \text{ т.e.}$$

$$\lg \Pi P = \lg \Pi P^{0} + A\Delta z_{i}^{2} \left(\frac{\sqrt{I}}{1+\sqrt{I}} - 0, 2 \cdot I\right) \tag{2.4}$$

Если в растворе, кроме реакции (2.1) протекают конкурентные реакции протонирования аниона ($A^{m-} + H^+ \leftrightarrow HA^{-(m-1)}$ или комплексообразования катиона ($M^{n+} + L \leftrightarrow ML^{n+}$), то используют условное произведение растворимости – $\Pi P'$.

Условное произведение растворимости ПР' — это произведение суммарной концентрации всех форм существования катиона малорастворимого соединения на суммарную концентрацию всех форм существования аниона этого соединения в степенях, соответвствующих стехиометрическим коэффициентам, в насыщенном растворе при данной температуре, давлении и ионной силе.

$$\Pi P' = [M']^m [A']^n , \qquad (2.5)$$

где [M'], [A'] – условные суммарные концентрации всех форм существования катиона и аниона в растворе.

Коэффициент побочных (конкурентных) реакций обозначают α:

$$\alpha_{M} = \frac{[M]'}{[M^{n+}]} ; \alpha_{A} = \frac{[A]'}{[A^{m-}]}$$

Подставив в уравнение (2.5) выражения $[M]' = [M^{n+}] \cdot \alpha_M$; $[A]' = [A^{m-}] \cdot \alpha_A$, получаем:

$$\Pi P' = [M^{n+}]^m [A^{m-}]^n \cdot \alpha_M^m \cdot \alpha_A^n = \Pi P^0 \cdot \alpha_M^m \cdot \alpha_A^n.$$

Расчеты с использованием условного произведения растворимости приводятся далее.

2.2. Условия образования и растворения осадка

Если концентрация осадителя (например, HCl) в растворе, содержащем осаждаемые ионы (например, Ag^+), такая, что произведение концентраций (активностей) ионов $[Ag^+]\cdot[Cl^-]$ (ионное произведение) меньше ΠP , то раствор называют ненасыщенным; в таком растворе осадок не образуется.

При увеличении концентрации ионов достигается равенство $[Ag^+]\cdot[Cl^-] = \Pi P;$ такой раствор называют насыщенным.

Если произведение концентраций ионов превышает табличное значение ПР, т.е. $[Ag^+][Cl^-] > \Pi P$, то раствор называют пересыщенным; из него выделяется часть растворенного вещества в виде твердой фазы (осадка).

Если с помощью дополнительных реагентов (например, NH_3), уменьшается концентрация одного или нескольких ионов и ионное произведение становится меньше ΠP , т.е. $[Ag^+][Cl^-] < \Pi P$, (например, вследствие реакции $Ag^+ + 2NH_3 \leftrightarrow [Ag(NH_3)_2]^+$) то осадок растворяется.0

2.3. Растворимость осадков в воде

По значениям ΠP^0 , приведенным в справочниках, можно вычислить растворимость малорастворимых электролитов.

Если S (моль/л) – растворимость осадка $M_m A_n$, то

$$\Pi P^0 = (mS)^m (nS)^n$$
, $S^{(m+n)} = \Pi P / m^m \cdot n^n$.

Откуда

$$S = \sqrt[(m+n)]{\Pi P^0 / m^m \cdot n^n}, \quad (MONb/\Lambda)$$
 (2.6)

По этой формуле рассчитывается растворимость осадка в воде без учета побочных реакций.

Для большинства малорастворимых соединений, имеющих малое значение $\Pi P^0 (\leq 10^{-6})$, влиянием ионной силы за счет растворимости осадка можно пренебречь.

Если за счет растворимости осадка ионная сила превышает 0,001, то необходимо ввести поправку в уравнение (2.6):

$$S = \sqrt[(m+n)]{\Pi P^0 / m^m \cdot n^n \cdot \gamma_{M^{n+}}^m \cdot \gamma_{A^{m-}}^n}$$
 (2.7)

Если в водном растворе возможны конкурентные реакции, то необходимо использовать условное произведение растворимости:

$$S = {\binom{m+n}{\Pi}P'/m^{m} \cdot n^{n} \cdot \gamma_{M^{n+}}^{m} \cdot \gamma_{A^{m-}}^{n}} =$$

$$= {\binom{m+n}{\Pi}P^{0}\alpha_{M}^{m}\alpha_{A}^{n}/m^{m}n^{n}\gamma_{M^{n+}}^{m}\gamma_{A^{m-}}^{n}}$$
(2.8)

2.4. Влияние одноименных ионов на растворимость осадка

Увеличение концентрации одного из ионов осадка приводит к уменьшению концентрации другого иона, т.е. к понижению растворимости.

Если в насыщенном растворе $M_m A_n$ увеличить концентрацию аниона $[A^{m-}] = C_A$, то при растворимости S получим:

$$\Pi P = (mS)^m \cdot (C_A + nS)^n \approx m^m \cdot S^m \cdot C_A^n$$
, если $C_A + nS \approx C_A$.

Растворимость S рассчитывается по формуле:

$$S = \sqrt[m]{\Pi P/m^m \cdot C_A^{\ n}} \tag{2.9}$$

Если необходимо учесть влияние ионной силы и конкурентных реакций, то растворимость определяют по формуле:

$$S = \sqrt[m]{\Pi P^0 \cdot \alpha_M^m \alpha_A^n / m^n \cdot C_A^n \gamma_{M^{n+}}^m}, \qquad (2.10)$$

где S – растворимость, т.е. концентрация (моль/л).

2.5. Последовательное осаждение двух осадков

Если в водном растворе присутствуют катионы M_1 и M_2 , осаждаемые анионом X, то первым начнет осаждаться ион, для которого раньше достигается ПР. При достаточно большой разнице ПР можно последовательно осадить их и отделить друг от друга.

$$M_1X\downarrow \longleftrightarrow M_1 + X, \Pi P_1 = [M_1][X];$$

 $M_2X\downarrow \longleftrightarrow M_2 + X, \Pi P_2 = [M_2][X].$

Заряды ионов для простоты опущены.

Осадки образуются, если

$$[X_1] \ge \frac{\Pi P}{[M_1]}; [X_2] \ge \frac{\Pi P}{[M_2]}.$$

Если $[X_1] \leq [X_2]$, то первым выпадает осадок $M_1 X \downarrow$.

Осадки выпадают вместе, когда $[X_1] = [X_2]$ при соотношении концентраций:

$$\frac{\varPi P_1}{\llbracket M_1 \rrbracket} = \frac{\varPi P_2}{\llbracket M_2 \rrbracket}; \frac{\varPi P_1}{\varPi P_2} = \frac{\llbracket M_1 \rrbracket}{\llbracket M_2 \rrbracket}.$$

Осаждение считается полным, если концентрация $[M_1] = 10^{-6}$ моль/л.

Если при такой концентрации $[M_1]$ и $[X_1] = \frac{\varPi P_1}{10^{-6}}$ не достигается ΠP_2 , т.е. $[M_2][X_1]$

= $[M_2] \cdot \Pi P / 10^{-6} < \Pi P_2$, то возможно количественное разделение ионов M_1 и M_2 .

Так как обычно в аналитической практике концентрации ионов $\sim 0,1$ M, то $\Pi P_1 / \Pi P_2 \le 10^{-5}$. Если при стехиометрии осадков 1:1, произведения растворимости отличаются не менее чем на пять порядков, то возможно их количественное разделение.

2.6. Расчеты равновесий при осаждении малорастворимых электролитов

2.6.1. Расчеты равновесий при осаждении хлоридов

В систематическом качественном анализе осаждают малорастворимые хлориды свинца (II), серебра (I) и ртути (I).

$$\begin{array}{lll} PbCl_2\downarrow & \leftrightarrow & Pb^{2^+} & + & 2Cl^-; \\ x & & & 2x \\ \end{array} & \Pi P = [Pb^{2^+}][Cl^-]^2 = 4x^3 = 1,6 \cdot 10^{-5}; \\ AgCl\downarrow & \leftrightarrow & Ag^+ & + & Cl^-; \\ x & & x \\ \end{array} & \Pi P = [Ag^+][Cl^-] = x^2 = 1,78 \cdot 10^{-10}; \\ Hg_2Cl_2\downarrow & \leftrightarrow & Hg_2^{2^+} & + & 2Cl^-; \\ x & & & 2x \\ \end{array} & \Pi P = [Hg_2^{2^+}][Cl^-]^2 = 4x^3 = 1,3 \cdot 10^{-18}. \end{array}$$

<u>Пример 1</u>. Рассчитать растворимость $PbCl_2$, AgCl и Hg_2Cl_2 в воде по данным о ΠP^0 . <u>Решение</u>. Растворимость осадков в воде рассчитываем по формуле (2.6):

$$S_{PbCl_2} = x = \sqrt[3]{\frac{1,6 \cdot 10^{-5}}{4}} = 1,59 \cdot 10^{-2} \,\text{моль} / \pi;$$

$$S_{AgCl} = x = \sqrt{1,78 \cdot 10^{-10}} = 1,33 \cdot 10^{-5} \,\text{моль}/\pi;$$

$$S_{Hg_2Cl_2} = x = \sqrt[3]{\frac{1,3\cdot 10^{-18}}{4}} = 6,87\cdot 10^{-7}$$
 моль / л.

При осаждении хлоридов первым осаждается менее растворимый Hg_2Cl_2 .

Наиболее растворимым из рассматриваемых хлоридов является $PbCl_2$. При повышении температуры растворимость его существенно увеличивается. Это позволяет отделить $PbCl_2$ от остальных хлоридов, промывая его многократно горячей водой.

<u>Пример 2</u>. При какой концентрации Cl^- -ионов достигается полное осаждение $Hg_2Cl_2\downarrow$, т.е. $[Hg_2^{2+}]=10^{-6}$ моль/л ?

Решение.
$$[Hg_2^{2+}][Cl^-]^2 = \Pi P = 1,3 \cdot 10^{-18}$$

$$[Cl^{-}] = \sqrt{1.3 \cdot 10^{-18} / 10^{-6}} = 1.14 \cdot 10^{-6} \mod \pi$$

<u>Пример 3</u>. Будет ли осаждаться AgCl из 0,1 M AgNO₃ при [Cl $^-$] = 1,14·10 $^{-6}$ моль/л?

<u>Решение</u>. [Ag⁺][Cl⁻] = $0,1\cdot1,14\cdot10^{-6}=1,14\cdot10^{-7}>\Pi P$ (ПР = $1,78\cdot10^{-10}$). Осаждение AgCl происходит.

Сравнивая результаты расчета в примерах 2 и 3, делаем вывод: нельзя отделить ртуть (I) от серебра (I), осаждая хлориды этих металлов.

<u>Пример 4</u>. При какой концентрации Cl^- -ионов полностью осаждается AgCl, т.е. $[Ag^+] = 10^{-6}$ моль/л?

Решение. [Ag⁺][Cl⁻] = 1,78·10⁻¹⁰, [Cl⁻] =
$$\frac{1,78\cdot10^{-10}}{10^{-6}}$$
 = 1,78·10⁻⁴ моль/л.

<u>Пример 5</u>. Будет ли осаждаться $PbCl_2$ из 0,1 M $Pb(NO_3)_2$, если $[Cl^-] = 1,78 \cdot 10^{-4}$ моль/л?

<u>Решение</u>. [Pb²⁺][Cl⁻]² = 0,1·(1,78·10⁻⁴)² = 3,17·10⁻⁹ < ПР (ПР = 1,6·10⁻⁵), т.е. осадок PbCl₂↓ не образуется.

Сравнивая примеры (2)–(5), делаем вывод: можно осадить $Hg_2Cl_2\downarrow$ и $AgCl\downarrow$ и отделить их от Pb^{2+} .

<u>Пример 6</u>. При какой концентрации Cl⁻-ионов будет осаждаться PbCl₂↓ из 0,1 M Pb(NO₃)₂?

<u>Решение</u>. [Pb²⁺][Cl⁻]² = Π P = 1,6·10⁻⁵

$$[Cl^{-}] = \sqrt{\Pi P/[Pb^{2+}]} = \sqrt{1,6 \cdot 10^{-5}/0,1} = 1,26 \cdot 10^{-2} \text{ моль}/\pi.$$

Расчеты в примерах (1)–(6) выполнены без учета влияния ионной силы.

<u>Пример 7</u>. Рассчитать ПР и растворимость осадка AgCl в 0,1 M KNO₃.

Решение. Ионная сила раствора равна

$$I = \frac{1}{2} \sum cz^2 = \frac{1}{2} (0, 1 \cdot 1 + 0, 1 \cdot 1) = 0, 1$$

Как видно из примера (1), растворимость осадка AgCl мала и не вносит существенного вклада в величину ионной силы раствора.

$$AgCl\downarrow \leftrightarrow Ag^+ + Cl^-, \alpha_{Ag^+} \cdot \alpha_{Cl^-} = 1,78 \cdot 10^{-10}$$

По уравнению (2.4) рассчитываем lg ПР:

$$\lg \Pi P = -9.75 + 0.509 \cdot 2(\frac{\sqrt{0.1}}{1 + \sqrt{0.1}} - 0.2 \cdot 0.1) = -9.53$$

Таким образом, при I=0,1 величина ΠP_{AgCl} составляет 2,95 · 10^{-10} . Теперь можно рассчитать растворимость AgCl в 0,1M KNO₃:

$$S = \sqrt{2,95 \cdot 10^{-10}} = 1,72 \cdot 10^{-5} \text{ моль/л.}$$

2.6.2. Расчеты равновесий при осаждении сульфатов

В систематическом качественном анализе малорастворимые сульфаты кальция, стронция и бария осаждают действием серной кислоты или $(NH_4)_2SO_4$. Пример 1. Рассчитать растворимость (моль/л) сульфатов кальция, стронция и бария в воде по данным о ПР. Какой осадок осаждается первым при одинаковых концентрациях этих ионов?

<u>Решение</u>. Равновесия в растворе над осадками сульфатов запишутся:

$$\begin{split} CaSO_4 \downarrow & \leftrightarrow & Ca^{2^+} + & SO_4^{2^-}; & [Ca^{2^+}] \cdot [SO_4^{2^-}] = \Pi P = 2,5 \cdot 10^{-5} \\ SrSO_4 \downarrow & \leftrightarrow & Sr^{2^+} + & SO_4^{2^-}; & [Sr^{2^+}] \cdot [SO_4^{2^-}] = \Pi P = 3,2 \cdot 10^{-7} \\ BaSO_4 \downarrow & \leftrightarrow & Ba^{2^+} + & SO_4^{2^-}; & [Ba^{2^+}] \cdot [SO_4^{2^-}] = \Pi P = 1,1 \cdot 10^{-10} \end{split}$$

Растворимость сульфатов в воде (S, моль/л) рассчитываем по формуле $S = \sqrt{\Pi P} \ \ \text{и получаем:}$

$$S_{CaSO_4} = \sqrt{2,5 \cdot 10^{-5}} = 5,00 \cdot 10^{-3} \, \text{моль} / \pi;$$

 $S_{SrSO_4} = \sqrt{3,2 \cdot 10^{-7}} = 5,66 \cdot 10^{-4} \, \text{моль} / \pi;$
 $S_{BaSO_4} = \sqrt{1,1 \cdot 10^{-10}} = 1,05 \cdot 10^{-5} \, \text{моль} / \pi;$

Первым выпадает наименее растворимый осадок $BaSO_4$, затем $SrSO_4$ и последним – $CaSO_4$.

<u>Пример 2</u>. При какой концентрации SO_4^{2-} - ионов начнет осаждаться $BaSO_4$ из 0,1 M раствора $Ba(NO_3)_2$?

$$[SO_4^{2-}] = \frac{\Pi P}{[Ba^{2+}]} = \frac{1,1 \cdot 10^{-10}}{0,1} = 1,1 \cdot 10^{-9} \,\text{моль}/\,\pi.$$

<u>Пример 3</u>. При какой концентрации SO_4^{2-} -ионов осаждение $BaSO_4$ будет полным, т.е. $[Ba^{2+}] = 10^{-6}$ моль/л?

<u>Решение</u>.

$$[SO_4^{2-}] = \frac{\Pi P}{[Ba^{2+}]} = \frac{1,1 \cdot 10^{-10}}{10^{-6}} = 1,1 \cdot 10^{-4} \,\text{моль}/\,\pi.$$

<u>Пример 4</u>. Будет ли осаждаться $SrSO_4$ из 0,1 M раствора $Sr(NO_3)_2$, если $[SO_4^{2-}] = 1,1\cdot 10^{-4}$ моль/л?

<u>Решение</u>. Если $[SO_4^{2-}] = 1,1\cdot 10^{-4}$ моль/л, то $[Sr^{2+}]\cdot [SO_4^{2-}] = 0,1\cdot 1,1\cdot 10^{-4} = 1,1\cdot 10^{-5} >$ ПР $(3,2\cdot 10^{-7})$, SrSO₄ будет осаждаться. Следовательно, нельзя полностью отделить Ba^{2+} (в виде $BaSO_4$) от Sr^{2+} , осаждая их в виде сульфатов.

<u>Пример 5</u>. При каком соотношении концентраций $[Ba^{2+}]$ / $[Sr^{2+}]$ сульфаты бария и стронция осаждаются совместно?

Решение.

$$\frac{[Ba^{2^{+}}]}{[Sr^{2^{+}}]} = \frac{[Ba^{2^{+}}][SO_{4}^{2^{-}}]}{[Sr^{2^{+}}][SO_{4}^{2^{-}}]} = \frac{\Pi P_{BaSO_{4}}}{\Pi P_{SrSO_{4}}} = \frac{1,1 \cdot 10^{-10}}{3,2 \cdot 10^{-7}} = 3,4 \cdot 10^{-4}.$$

Если $[Ba^{2+}]$ / $[Sr^{2+}] = 3,4\cdot10^{-4}$, то осаждается $BaSO_4$ до тех пор пока это соотношение не станет равным $3,4\cdot10^{-4}$. При $[Ba^{2+}]$ / $[Sr^{2+}] = 3,4\cdot10^{-4}$ осаждаются совместно $BaSO_4\downarrow$ и $SrSO_4\downarrow$. Если $[Ba^{2+}]$ / $[Sr^{2+}] < 3,4\cdot10^{-4}$, то осаждается $SrSO_4$.

<u>Пример 6</u>. При какой концентрации $SO_4^{2^-}$ -ионов будет достигнуто полное осаждение стронция, т.е. $[Sr^{2^+}] = 10^{-6}$ моль/л?

Решение. Полное осаждение SrSO₄ достигается, если:

$$[SO_4^{2-}] = \frac{\Pi P}{[Sr^{2+}]} = \frac{3.2 \cdot 10^{-7}}{10^{-6}} = 0.32 \text{ моль}/ \pi.$$

<u>Пример 7</u>. Будет ли осаждаться $CaSO_4$ при $[SO_4^{2-}] = 0,32$ моль/л из раствора 0,1 M $Ca(NO_3)_2$?

Решение.
$$[Ca^{2+}] \cdot [SO_4^{2-}] = \Pi P = 2,5 \cdot 10^{-5}.$$

$$[Ca^{2+}] \cdot [SO_4^{2-}] = 0,1 \cdot 0,32 = 3,2 \cdot 10^{-2} > \Pi P \ (2,5 \cdot 10^{-5}).$$

Таким образом, CaSO₄ будет осаждаться, т.е. нельзя отделить стронций от кальция, осаждая их в виде сульфатов.

<u>Пример 8</u>. Смешали одинаковые объемы 0,2 M $Ca(NO_3)_2$ и 0,2 M H_2SO_4 . Рассчитать концентрацию (моль/л) неосажденного кальция в этом растворе.

Решение. В растворе имеют место равновесия:

1.
$$CaSO_4 \downarrow = Ca^{2+} + SO_4^{2-};$$
 $\Pi P = [Ca^{2+}] \cdot [SO_4^{2-}] = 2,5 \cdot 10^{-5}.$

2. $Ca^{2+} + HSO_4^- = CaSO_4 \downarrow + H^+;$

$$K = \frac{[H^+]}{[Ca^{2+}][HSO_4^-]} \cdot \frac{[SO_4^{2-}]}{[SO_4^{2-}]} = \frac{K^a_{HSO_4^-}}{IIP_{CaSO_4}} = \frac{1,15 \cdot 10^{-2}}{2,5 \cdot 10^{-5}} = 460.$$

Растворимость обозначим S и получим:

$$S = [Ca^{2+}] = [SO_4^{2-}] + [HSO_4^{-}] = \frac{\Pi P}{[Ca^{2+}]} + \frac{[H^+]}{[Ca^{2+}]K};$$

$$S^2 = [Ca^{2+}]^2 = \Pi P + \frac{[H^+]}{K}$$

После смешения концентрации компонентов реакций будут равны:

0,1 M Ca(NO₃)₂ и 0,1 M H₂SO₄.

Если $[HSO_4^-] >> [SO_4^{2-}]$, т.е. можно допустить, что $[Ca^{2+}] \approx [HSO_4^-]$, то равновесная концентрация $[H^+] = 0, 1 + (0, 1 - S) = 0, 2 - S$.

Подставляем введенные обозначения и получаем:

$$S^{2} = 2,5 \cdot 10^{-5} + (0,2 - S) / 460$$

$$S^{2} = 2,5 \cdot 10^{-5} + 4,347 \cdot 10^{-4} - 2,174 \cdot 10^{-3} S,$$

$$S^{2} + 2,174 \cdot 10^{-3} S - 4,597 \cdot 10^{-4} = 0;$$

$$S = \frac{-2,174 \cdot 10^{-3} + \sqrt{4,726 \cdot 10^{-6} + 4 \cdot 4,597 \cdot 10^{-4}}}{2} = 0,0204 \quad \text{моль} / \pi.$$

Концентрация $[SO_4^{2-}]$ в этом растворе равна

$$[SO_4^{2-}] = \frac{\Pi P}{[Ca^{2+}]} = \frac{2.5 \cdot 10^{-5}}{0.0204} = 1.23 \cdot 10^{-3} \text{ моль/ } \pi,$$

 $[HSO_4^-] = S - 0,001$. Тогда $[H^+] = 0,1 + (0,1 - S + 0,001) = 0,201 - S$. Таким образом, сделанное допущение о том, что $[H^+] \approx 0,2 - S$, было вполне правомерным.

2.6.3. Расчеты равновесий при осаждении гидроксидов

Осадок гидроксидов: $Fe(OH)_3$, $Mg(OH)_2$, $Cu(OH)_2$, $Cd(OH)_2$; $Ni(OH)_2$, $Co(OH)_2$, $Co(OH)_3$, $Bi(OH)_3$, $SbO(OH)_3$, $MnO(OH)_2$ (или MnO_2), HgO получают в систематическом ходе анализа при добавлении 6 M NaOH (в присутствии H_2O_2) к анализируемому раствору.

Произведение растворимости и растворимость перечисленных гидроксидов равны:

Mn(OH)₄↓
$$\leftrightarrow$$
 Mn⁴⁺ + 4OH⁻; s(4s)⁴ = ΠP = 1·10⁻⁵⁶; $S = \sqrt[5]{\Pi P/256} = 2,1 \cdot 10^{-12} \text{ моль/ } \pi;$
Co(OH)₃↓ \leftrightarrow Co³⁺ + 3OH⁻; s(3s)³ = ΠP = 4·10⁻⁴⁵; $S = \sqrt[4]{\Pi P/27} = 3,5 \cdot 10^{-12} \text{ моль/ } \pi;$
Fe(OH)₃↓ \leftrightarrow Fe³⁺ + 3OH⁻; s(3s)³ = ΠP = 6,3·10⁻³⁸; $S = \sqrt[4]{\Pi P/27} = 5,0 \cdot 10^{-10} \text{ моль/ } \pi;$
Solution of the second of the seco

Как видно, растворимость гидроксидов в воде в каждой последующей строке больше, чем в предыдущей.

Наиболее растворимым гидроксидов из указанных в таблице является $Mg(OH)_2$.

<u>Пример 1</u>. Образуется ли осадок $Mg(OH)_2$ при добавлении к 0,2 М $Mg(NO_3)_2$ одинакового объема:

1) 0,2 M NaOH; 2) 0,2 M NH₃; 3) аммонийного буферного раствора с концентрациями 0,2 M NH₃ и 0,2 M NH₄NO₃.

<u>Решение</u>. 1) При смешении одинаковых объемов растворов их концентрации уменьшаются в 2 раза, т.е. становятся равными: c(NaOH) = 0,1моль/л и $c(Mg(NO_3)_2) = 0,1$ (моль/л).

В растворе NaOH концентрация $[OH^-] = 0,1$ моль/л, $[Mg^{2^+}] = 0,1$ моль/л, так как NaOH и $Mg(NO_3)_2$ являются сильными электролитами.

Произведение концентраций: $[Mg^{2+}] \cdot [OH^-]^2 = 0, 1 \cdot (0,1)^2 = 10^{-3} > \Pi P$ (ПР = $6,0 \cdot 10^{-10}$). Следовательно, осадок $Mg(OH)_2$ в этих условиях образуется.

2) Концентрации компонентов смеси равны:

$$c(NH_3) = 0.1$$
; $c(Mg(NO_3)_2) = 0.1$ (моль/л).

В растворе аммиака устанавливается равновесие:

NH₃ + H₂O
$$\leftrightarrow$$
 NH₄⁺ + OH⁻; $K^b_{NH_3} = \frac{[NH_4^+][OH^-]}{[NH_3]} = \frac{x^2}{c - x} = 1,76 \cdot 10^{-5}$;
 $c - x$ x x x $x = [OH^-] = \sqrt{K^b_{NH_3} \cdot C_{NH_3}} = \sqrt{1,76 \cdot 10^{-5} \cdot 0,1} = 1,33 \cdot 10^{-3} \text{ моль/л}$;

Произведение концентраций ионов равно:

$$[Mg^{2+}] \cdot [OH^{-}]^2 = 0.1 \cdot (1.33 \cdot 10^{-3})^2 = 1.76 \cdot 10^{-7} > \Pi P (\Pi P = 6.0 \cdot 10^{-10}).$$

Таким образом, при смешении равных объемов 0,2M растворов $Mg(NO_3)_2$ и NH_3 осадок $Mg(OH)_2$ образуется.

3) Концентрации компонентов смеси равны:

$$c(Mg(NO_3)_2) = 0,1$$
; $c(NH_3) = 0,1$; $c(NH_4NO_3) = 0,1$ (моль/л).

В полученном растворе имеют место равновесия:

Следовательно,

$$[NH_4^+] = 0.1 + x; \quad [OH^-] = x; \quad [NH_3] = 0.1 - x$$

Подставляя числовые значения в выражение константы основной диссоциации аммиака, получаем:

$$x = [OH^{-}] = K_{NH_{3}}^{b} \cdot \frac{C_{NH_{3}}}{C_{NH_{4}^{+}}} = 1,76 \cdot 10^{-5} \cdot \frac{0,1}{0,1} = 1,76 \cdot 10^{-5}$$
 моль / л.

Произведение концентраций ионов равно:

$$[Mg^{2+}] \cdot [OH^{-}]^{2} = 0, 1 \cdot (1,76 \cdot 10^{-5})^{2} = 3,10 \cdot 10^{-11} < \Pi P.$$

Следовательно, в среде аммонийного буфера осадок Mg(OH)₂ не образуется.

<u>Пример 2</u>. При каком рН начнет осаждаться $Cu(OH)_2$ ↓ из раствора 0,1 M $Cu(NO_3)_2$?

При каком значении pH будет достигнуто полное осаждение $Cu(OH)_2\downarrow$ (т.е. $[Cu^{2^+}]$ = 10^{-6} моль/л)?

Решение. Равновесие в растворе над осадком запишется:

$$Cu(OH)_2 \downarrow \leftrightarrow Cu^{2+} + 2OH^-; \Pi P = [Cu^{2+}] \cdot [OH^-]^2 = 8.3 \cdot 10^{-20};$$

$$[OH^{-}] = \sqrt{\frac{\Pi P}{[Cu^{2+}]}} = \sqrt{\frac{8.3 \cdot 10^{-20}}{0.1}} = 9.11 \cdot 10^{-10} \, \text{моль} / \pi;$$

$$pH = 14 - pOH$$
, $pOH = -1g (9.11 \cdot 10^{-10}) = 9.04$, $pH = 4.96$.

При рН 4,96 начнет осаждаться Си(ОН)2.

Полное осаждение гидроксида меди будет достигнуто при:

$$[OH^{-}] = \sqrt{\frac{8.6 \cdot 10^{-20}}{10^{-6}}} = 2.93 \cdot 10^{-7}, \text{ pOH} = 6.53, \text{ pH} = 7.47.$$

<u>Пример 3</u>. Рассчитать массовую долю (%) магния, осажденного в виде $Mg(OH)_2$ ↓ при сливании равных объемов 0,2 M $MgCl_2$ и 0,4 M NH_3 .

<u>Решение</u>. Концентрации магния (II) и аммиака после смешения растворов равны:

$$C^0_{Mg(II)} = \frac{0.2}{2} = 0.1 \text{ моль}/\pi;$$

$$C^0_{NH_3} = \frac{0.4}{2} = 0.2$$
 моль/л.

Запишем уравнение реакции, протекающей в полученной смеси:

$$Mg^{2+} + 2NH_3 + 2H_2O \leftrightarrow Mg(OH)_2\downarrow + 2NH_4^+;$$

 $0,1-x$ $0,2-2x$ $2x$

Образованием аммиачных комплексов $Mg[NH_3]^{2^+}$, $Mg[NH_3]_2^{2^+}$ можно пренебречь, т.к. $\beta_1=1,7,\ \beta_2=1,2$ и доля образующихся комплексов не превышает 0,01% (см. дальше стр. 51).

Если x (моль/л) — концентрация Mg^{2^+} , осажденного в виде $\mathrm{Mg}(\mathrm{OH})_2$, то $[\mathrm{Mg}^{2^+}]=0,1-x$.

Обозначения остальных равновесных концентраций будут следующими: $[NH_4^+] = 2x; [NH_3] = 0,2-2x.$

Подставляем эти обозначения в выражение константы равновесия:

$$\frac{(2x)^2}{(0.1-x)(0.2-2x)^2} = \frac{x^2}{(0.1-x)^3} = 0.516.$$

Решаем уравнение методом последовательных приближений относительно x:

Если
$$0,1-x\approx 0,1$$
, то $x=\sqrt{0,516\cdot 0,1^3}=2,27\cdot 10^{-2}$ моль/л.

Если
$$0.1 - x = 0.1 - 2.27 \cdot 10^{-2}$$
, то $x = 0.015$ моль/л.

Если
$$0,1-x=0,1-0,015$$
, то $x=0,017$ моль/л.

Если
$$0,1-x=0,1-0,017$$
, то $x=0,017$ моль/л.

В растворе 0.017 моль/л магния осадится в виде $Mg(OH)_2 \downarrow$.

Массовая доля осажденного магния составит:

$$\frac{0.017}{0.1}$$
 · 100 = 17 % от общего количества.

2.6.4. Расчеты равновесий при осаждении хроматов

Для отделения бария (II) от стронция (II) в систематическом ходе анализа используют осаждение BaCrO₄ в ацетатном буферном растворе.

Произведения растворимости $\Pi P_{BaCrO_4} = 1,2\cdot 10^{-10}$ и $\Pi P_{SrCrO_4} = 3,6\cdot 10^{-5}$ различаются значительно, поэтому, регулируя величину рН раствора, можно достичь их полного разделения.

В слабокислой и нейтральной среде в растворе хроматов имеют место равновесия:

$$\text{HCrO}_{4}^{-} \leftrightarrow \text{H}^{+} + \text{CrO}_{4}^{2-}; \quad K^{a}_{HCrO4}^{-} = \frac{[H^{+}] \cdot [CrO^{-}_{4}]}{[HCrO^{-}_{4}]} = 3.2 \cdot 10^{-7} \quad (2.11)$$

$$Cr_2O_7^{2-} + H_2O = 2 HCrO_4^{--} K_{Cr2O7}^{2-} = \frac{[HCrO_4^{--}]^2}{[Cr_2O_7^{2-}]} = 2.3 \cdot 10^{-2}$$
 (2.12).

Общая концентрация хрома в этом растворе равна:

$$C_{Cr}^{0} = [CrO_4^{2-}] + [HCrO_4^{-}] + 2[Cr_2O_7^{2-}]$$

Выражаем равновесные концентрации ионов из уравнений (2.11) и (2.12), подсавляем в последнее выржение для C^0_{Cr} и получаем:

$$\left[\operatorname{CrO_{4}^{2-}}\right] + \frac{\left[H^{+}\right] \cdot \left[\operatorname{CrO^{2-}}_{4}\right]}{3.2 \cdot 10^{-7}} + 2 \frac{\left[H^{+}\right]^{2} \cdot \left[\operatorname{CrO^{2-}}_{4}\right]^{2}}{(3.2 \cdot 10^{-7})^{2} \cdot 2.3 \cdot 10^{-2}} = C_{Cr}^{0}$$
(2.13).

На основании полученного уравнения (2.13) можно рассчитать равновесную концентрацию хромат-иона, а, следовательно, и [HCrO₄ $^{-}$], и [Cr₂O₇ $^{2-}$](см. соотношения (2.11) и (2.12)) при заданном значении рН и общей концентрации хрома ($\mathrm{C^0}_{\mathrm{Cr}}$).

При заданной концентрации хрома (C^0_{Cr}) и равновесной концентрации хромат-иона, используя уравнение (2.13), рассчитывают равновесную концентрацию ионов водорода и рН раствора.

<u>Пример 1.</u> Рассчитать мольные доли частиц CrO_4^2 , $HcrO_4^-$, $Cr_2O_7^{2-}$ при pH=4 и общей концентрации хрома: 1,0моль/л; 0,1моль/л и 0,01 моль/л.

<u>Решение.</u> При pH, равном 4, $[H^+] = 10^{-4}$ и уравнение (2.13) принимает вид:

$$\begin{split} & [\text{CrO}_4^{2\text{-}}]^2 \cdot 8,492 \cdot 10^6 + [\text{CrO}_4^{2\text{-}}] \cdot 3,13 \cdot 10^2 - 1 = 0; \\ & [\text{CrO}_4^{2\text{-}}] = \frac{\text{--} 3,13 + \sqrt{9,796 \cdot 10^4 + 4 \cdot 8,492 \cdot 10^6}}{2 \cdot 8,492 \cdot 10^6} = 3,25 \cdot 10^{-4} \text{моль/л} \end{split}$$

Мольная доля хромат-иона равна:

$$\chi_{\text{CrO4}}^{2-} = \frac{\left[CrO^{2-}_{4}\right]}{C_{Cr}^{0}} = 3.25 \cdot 10^{-4}$$

Из уравнения (2.11) имеем:

$$[HCrO_4^-] = \frac{\left[H^+\right] \cdot \left[CrO^{2^-}_4\right]}{8.2 \cdot 10^{-7}} = \frac{10^{-4} \cdot 3.25 \cdot 10^{-4}}{3.2 \cdot 10^{-7}} = 0,102 \text{ моль/л}$$

$$\chi_{HCrO4}^- = \frac{\left[HCrO^-_{-4}\right]}{C_{Cr}^{-0}} = 0,102$$

Из уравнения (2.12) следует:

$$[\operatorname{Cr}_2\operatorname{O}_7^{2\text{-}}] = \frac{\left[H^+\right]^2 \cdot \left[\operatorname{Cr}\operatorname{O}^{2\text{-}}_4\right]^2}{(3,2\cdot 10^{-7})^2 \cdot 2,3\cdot 10^{-2}} = \frac{(10^{-4})^2 \cdot (3,25\cdot 10^{-4})^2}{(3,2\cdot 10^{-7})^2 \cdot 2,3\cdot 10^{-2}} = 0,449 \text{ моль/л}$$

$$\chi_{\operatorname{Cr}2\operatorname{O}_7^{2\text{-}}} = \frac{2\left[\operatorname{Cr}_2\operatorname{O}^{2\text{-}}_7\right]}{\operatorname{C}_{\operatorname{Cr}}^0} = \frac{2\cdot 0.449}{1} = 0.898$$

Аналогично выполняются расчеты и при других рН. Полученные величины представлены в табл.1.

Табл. 1. Мольные доли различных форм существования хрома (${\rm CrO_4^{2-}}$, ${\rm HCrO_4^{-}}$, ${\rm Cr_2O_7^{2-}}$) в 1м растворе при нескольких значениях рН.

Мольная доля						
иона						
в пересчете на	pH 4,0	pH 5,0	pH 6,0	pH 7,0	pH 8,0	pH 9,0
хром						
CrO_4^{2-}	$3,2\cdot10^{-4}$	$3,3\cdot10^{-3}$	0,032	0,274	0,902	0,996
HCrO ₄ -	0,102	0,102	0,100	0,086	0,028	3.10^{-3}
$\operatorname{Cr_2O_7^{2-}}$	0,898	0,898	0,868	0,640	0,070	8.10-4

Если $C_{Cr}^0 = 0,1$ моль/л, то уравнение (2.13) принимает вид:

$$[\operatorname{CrO_4^{2-}}] + \frac{10^{-4}[\operatorname{CrO^{2-}_4}]}{3,2 \cdot 10^{-7}} + 2 \frac{(10^{-4})^2 \cdot [\operatorname{CrO^{2-}_4}]^2}{(3,2 \cdot 10^{-7})^2 \cdot 2,3 \cdot 10^{-2}} = 0,1$$

$$[\operatorname{CrO_4^{2-}}]^2 \cdot 8,492 \cdot 10^7 + [\operatorname{CrO_4^{2-}}] \cdot 3,13 \cdot 10^3 - \frac{0,1}{0,1} = 0;$$

$$[\mathrm{CrO_4}^{2\text{-}}] = \frac{-3,13 \cdot 10^3 + \sqrt{9,796 \cdot 10^6 + 4 \cdot 8,492 \cdot 10^7}}{2 \cdot 8,492 \cdot 10^7} = 9,16 \cdot 10^{-5} \, \text{моль/л}$$

$$[\mathrm{HCrO_4}^{-}] = \frac{10^{-4} \cdot 9,16 \cdot 10^{-5}}{3,2 \cdot 10^{-7}} = 2,86 \cdot 10^{-2} \, \text{моль/л}$$

$$[\mathrm{Cr_2O_7}^{2\text{-}}] = \frac{(10^{-4})^2 \cdot (9,16 \cdot 10^{-5})^2}{(3,2 \cdot 10^{-7})^2 \cdot 2,3 \cdot 10^{-2}} = 3,56 \cdot 10^{-2} \, \, \text{моль/л}$$

Мольные доли частиц в пересчете на хром в этих условиях равны:

$$\chi_{\text{CrO4}^{2^{-}}} = \frac{9,16 \cdot 10^{-5}}{0,1} = 9,16 \cdot 10^{-4}$$

$$\chi_{\text{HCrO4}^{-}} = \frac{2,86 \cdot 10^{-2}}{0,1} = 0,286$$

$$\chi_{\text{Cr2O7}^{2^{-}}} = \frac{2 \cdot 3,56 \cdot 10^{-2}}{0.1} = 0,712$$

Если $C_{Cr}^0 = 0,1$ моль/л, то уравнение (2.13) принимает вид:

$$[CrO_4^{2-}] + \frac{10^{-4}[CrO^{2-}_4]}{3.2 \cdot 10^{-7}} + 2\frac{(10^{-4})^2 \cdot [CrO^{2-}_4]^2}{(3.2 \cdot 10^{-7})^2 \cdot 2.3 \cdot 10^{-2}} = 0.01$$

После несложных преобразований получаем:

$$[\mathrm{CrO_4^{2\text{-}}}]^2 \cdot 8,492 \cdot 10^8 + [\mathrm{CrO_4^{2\text{-}}}] \cdot 3,13 \cdot 10^4 - \textcolor{red}{\textbf{0,01}} = 0;$$
 Отсюда:
$$[\mathrm{CrO_4^{2\text{-}}}] = = \frac{-3,13 \cdot 10^4 + \sqrt{9,796 \cdot 10^8 + 4 \cdot 8,492 \cdot 10^8}}{2 \cdot 8,492 \cdot 10^8} = 2,05 \cdot 10^{-5} \, \text{моль/л}$$

$$[\mathrm{Cr_2O_7^{2\text{-}}}] = \frac{(10^{-4})^2 \cdot (2,05 \cdot 10^{-5})^2}{(3,2 \cdot 10^{-7})^2 \cdot 2,3 \cdot 10^{-2}} = 1,78 \cdot 10^{-3} \, \, \text{моль/л}$$

Мольные доли частиц в пересчете на хром в этих условиях равны:

$$\chi_{\text{CrO4}^2} = \frac{2,05 \cdot 10^{-5}}{0,01} = 2,05 \cdot 10^{-3} \,_{\text{МОЛЬ/Л}}$$
 $\chi_{\text{HCrO4}} = \frac{6,4 \cdot 10^{-3}}{0,01} = 0,641$
 $\chi_{\text{Cr2O7}^2} = \frac{2 \cdot 1,78 \cdot 10^{-3}}{0.01} = 0,356$

В таблице 2 представлены в табл.1.мольные доли частиц(CrO_4^{2-} , $HCrO_4^{-}$, $Cr_2O_7^{2-}$) в пересчете на хром при pH=4 и различных концентрациях общего хрома (C^0_{Cr}) в растворе.

Табл. 2. Мольные доли хрома в виде частиц CrO_4^{2-} , $HCrO_4^{-}$, $Cr_2O_7^{2-}$ при рН 4 в зависимости от общей концентрации хрома в растворе

Мольная	$\mathrm{C^0}_{\mathrm{Cr}}$, моль/л				
доля	1,0	0,1	0,01		
χ _{CrO4} ² -	3,2·10 ⁻⁴	9,16·10 ⁻⁴	2,05·10 ⁻⁵		
χ _{HCrO4} -	0,102	0,286	0,641		
χ _{Cr2O7} ²⁻	0,898	0,712	0,356		

<u>Пример 2.</u> При каком наименьшем значении pH достигается полное осаждение $BaCrO_4$ в 1M растворе $K_2Cr_2O_7$?

<u>Решение</u>. Полное осаждение $BaCrO_4$ наблюдается, если $[Ba^{2^+}] = 10^{-6}$ моль/л. При этом

$$[\operatorname{CrO_4^{2-}}] = \frac{\Pi P}{[Ba^{2+}]} = \frac{1,2 \cdot 10^{-10}}{10^{-6}} = 1,2 \cdot 10^{-4} \,_{\text{МОЛЬ}/Л}.$$

Используем уравнение (2.13.) для расчета равновесной концентрации ионов водорода в растворе дихромата калия, если $[CrO_4^{2-}] = 1,2\cdot 10^{-4}$ моль/л, а общая концентрация всех частиц $C^0_{Cr} = 1$ моль/л.

$$1,2\cdot10^{-4} + \frac{\left[H^{+}\right]\cdot1,2\cdot10^{-4}}{3,2\cdot10^{-7}} + 2\frac{\left[H^{+}\right]^{2}\cdot(1,2\cdot10^{-4})^{2}}{(3,2\cdot10^{-7})^{2}\cdot2,3\cdot10^{-2}} = 1$$

После преобразований получаем:

$$[H^+]^2 \cdot 1,223 \cdot 10^7 + [H^+] \cdot 3,75 \cdot 10^2 - 1 = 0$$

Отсюда

$$[H^{+}] = \frac{-3,75 \cdot 10^{2} + \sqrt{14,06 \cdot 10^{4} + 4 \cdot 1,223 \cdot 10^{7}}}{2 \cdot 1,223 \cdot 10^{7}} = 2,71 \cdot 10^{-4} \text{ моль/л};$$

$$pH = -(2,71 \cdot 10^{-4}) = 3,57$$

Таким образом, полное осаждение $BaCrO_4\,$ в 1M растворе $K_2Cr_2O_7\,$ достигается·

при pH > 3,57.

<u>Пример 3.</u> Будет ли осаждаться $SrCrO_4$ из 0,1M раствора $Sr(NO_3)_2$, содержащего 1моль/л $K_2Cr_2O_7$ при pH= 3,57?

<u>Решение.</u> Используем уравнение (2.13.) для расчета равновесной концентрации хромат-ионов [CrO_4^{2-}] в 1М растворе $K_2Cr_2O_7$ при рH= 3,57:

$$[CrO_4^{2-}] + \frac{2,71 \cdot 10^{-4} \cdot [CrO^{2-}_4]}{3,2 \cdot 10^{-7}} + 2\frac{(2,71 \cdot 10^{-4})^2 \cdot [CrO^{2-}_4]^2}{(3,2 \cdot 10^{-7})^2 \cdot 2,3 \cdot 10^{-2}} = 1$$

После преобразований имеем:

$$6.23 \cdot 10^{7} \cdot [CrO_{4}^{2-}]^{2} + 8.46 \cdot 10^{2} \cdot [CrO_{4}^{2-}] - 1 = 0;$$

$$[\mathrm{CrO_4}^{2\text{-}}] = \frac{-8,46 \cdot 10^2 + \sqrt{71,7 \cdot 10^4 + 4 \cdot 6,23 \cdot 10}^7}{2 \cdot 6,23 \cdot 10^7} = 1,2 \cdot 10^{-4} \, \mathrm{моль/л}.$$

Произведение концентраций ионов $[Sr^{2+}] \cdot [CrO_4^{2-}] = 0.1 \cdot 1.2 \cdot 10^{-4} = 1.2 \cdot 10^{-5}$ меньше $\Pi P_{SrCrO4} = 3,6 \cdot 10^{-5}$. Следовательно, осадок $SrCrO_4$ не образуется при pH= 3,57.

2.7. Равновесие между двумя осадками и раствором. Карбонизация

Если в растворе имеются два малорастворимых электролита, например BaSO₄ и BaCO₃, то при установившемся равновесии одновременно должны удовлетворяться два условия:

$$BaSO_4 \downarrow \leftrightarrow Ba^{2+} + SO_4^{2-}; [Ba^{2+}] \cdot [SO_4^{2-}] = \Pi P_{BaSO_4} = 1, 1 \cdot 10^{-10};$$

$$BaCO_3 \downarrow \leftrightarrow Ba^{2+} + CO_3^{2-}; [Ba^{2+}] \cdot [CO_3^{2-}] = \Pi P_{BaCO_3} = 4,0 \cdot 10^{-10}.$$

При совместном решении уравнений получаем, что в растворе, насыщенном по отношению к двум осадкам:

$$[SO_4^{2-}]/[CO_3^{2-}] = \frac{\Pi P_{BaSO_4}}{\Pi P_{BaCO_3}} = 0.275; [SO_4^{2-}] = 0.275[CO_3^{2-}].$$

При увеличении $[CO_3^{2-}]$ в растворе увеличивается $[SO_4^{2-}]$, так как отношение их постоянно.

При проведении систематического анализа $BaSO_4\downarrow$, не растворимый в кислотах, переводят в $BaCO_3\downarrow$ путем многократного кипячения осадка $BaSO_4$ с насыщенным раствором Na_2CO_3 .

<u>Пример 1</u>. Сколько граммов $BaSO_4$ превратится в $BaCO_3$ при карбонизации осадка 5 мл 0.1 M Na_2CO_3 ?

Решение. Уравнение реакции карбонизации запишется:

BaSO₄ + CO₃²⁻ = BaCO₃\psi + SO₄²⁻;

$$K = \frac{[SO_4^{2-}]}{[CO_3^{2-}]} \cdot \frac{[Ba^{2+}]}{[Ba^{2+}]} = \frac{\Pi P_{BaSO_4}}{\Pi P_{BaCO_3}} = \frac{1.1 \cdot 10^{-10}}{4.0 \cdot 10^{-10}} = 0,275.$$

Обозначим $[SO_4^{2-}] = x$, $[CO_3^{2-}] = 0, 1 - x$;

$$\frac{x}{0.1-x}$$
 = 0,275; $x = 0.0216 \text{ моль/л}.$

0,0216 моль ВаЅО₄↓ превратится в карбонат бария в 1 л раствора соды.

Масса осадка в 5 мл 0,1 M Na₂CO₃ равна:
$$\frac{0,0216 \cdot 233,39 \cdot 5}{1000}$$
 = 0,0252 г.

Константы равновесия реакций карбонизации сульфатов катионов третьей аналитической группы равны:

$$\begin{split} CaSO_4 + CO_3^{2-} &= CaCO_3 \downarrow + SO_4^{2-}; & k = 2,5 \cdot 10^{-5} \, / \, 3,8 \cdot 10^{-9} = 6,58 \cdot 10^3; \\ SrSO_4 + CO_3^{2-} &= SrCO_3 \downarrow + SO_4^{2-}; & k = 3,2 \cdot 10^{-7} \, / \, 1,1 \cdot 10^{-10} = 2,01 \cdot 10^3; \\ BaSO_4 + CO_3^{2-} &= BaCO_3 \downarrow + SO_4^{2-}; & k = 1,1 \cdot 10^{-10} \, / \, 4,0 \cdot 10^{-10} = 0,275. \end{split}$$

Константы равновесия реакций карбонизации уменьшаются в ряду $CaSO_4 \rightarrow SrSO_4 \rightarrow BaSO_4$. Осадки $CaSO_4$ и $SrSO_4$ можно путем **однократной карбонизации** практически полностью превратить в карбонаты кальция и стронция. Для превращения $BaSO_4$ в соответствующий карбонат необходима 3–5 кратная карбонизация.

2.8. Растворение малорастворимых электролитов

Осадок растворяется, если произведение активностей (концентраций) ионов малорастворимого электролита, становится меньше ПР.

Уменьшения концентрации достигают, связывая один из ионов электролита в слабодиссоциирующее соединение.

Осадок растворяется, если:

1) образуется растворимый слабый электролит или вода:

$$Mg(OH)_2\downarrow + 2NH_4^+ = Mg^{2+} + 2NH_3 + 2H_2O;$$

 $Fe(OH)_3\downarrow + 3H^+ = Fe^{3+} + 3H_2O.$

2) образуются комплексные соединения:

$$AgC1 \downarrow + 2NH_3 = [Ag(NH_3)_2]^+ + C1^-.$$

3) образуется соединение, частично выделяющееся в виде газа:

$$CaCO_3 \downarrow + 2H^+ = Ca^{2+} + H_2CO_3 (CO_2 \uparrow + H_2O).$$

4) образуются ионы в другой степени окисления:

$$MnO(OH)_2\downarrow + 2H^+ + H_2O_2 = Mn^{2+} + 3H_2O + O_2.$$

2.9. Растворение осадков в кислотах

Если осадок является гидроксидом или солью, содержащей анион слабой кислоты (${\rm CO_3}^{2-}$, ${\rm S^{2-}}$, ${\rm PO_4}^{3-}$ и т.д.), то равновесия при растворении осадка имеют вид:

1.
$$MA\downarrow \leftrightarrow M^{2+} + A^{2-},$$
 $\Pi P = [M^{2+}] \cdot [A^{2-}];$
2. $MA\downarrow + H^+ \leftrightarrow M^{2+} + HA^-,$ $K_2 = \frac{[M^{2+}][HA^-]}{[H^+]} = \frac{\Pi P}{K_2^a};$
3. $MA\downarrow + 2H^+ \leftrightarrow M^{2+} + H_2A,$ $K_3 = \frac{[M^{2+}][H_2A]}{[H^+]^2} = \frac{\Pi P}{K_1^a K_2^a}$

Растворимость осадка равна:

$$S = [M^{2+}] = [A^{2-}] + [HA^{-}] + [H_2A].$$

Подставляем в уравнение величины: $[A^{2^-}] = \frac{\Pi P}{[M^{2^+}]}, [HA^-] = \frac{\Pi P \cdot [H^+]}{K_2^a [M^{2^+}]},$

$$[H_2A] = \frac{\Pi P \cdot [H^+]^2}{K_1^a K_2^a [M^{2+}]}$$
 и после преобразований получаем:

$$[M^{2+}] = \frac{\Pi P}{[M^{2+}]} (1 + [H^{+}]/K_2^a + [H^{+}]^2/K_1^a \cdot K_2^a),$$

Коэффициент аА

$$\alpha_{A} = 1 + [H^{+}] / K_{2}^{a} + [H^{+}]^{2} / K_{1}^{a} \cdot K_{2}^{a}$$
(2.14)

называют коэффициентом побочной реакции аниона A^{2-} .

$$[M^{2+}] = \frac{\Pi P \cdot \alpha_A}{[M^{2+}]}; \quad [M^{2+}]^2 = \Pi P \cdot \alpha_A; \quad S^2 = \Pi P \cdot \alpha_A;$$

 $\mathbf{\Pi P'} = \mathbf{\Pi P \cdot \alpha_A} - \mathbf{ha}$ называют условным произведением растворимости

$$S = \sqrt{\Pi P \cdot \alpha_A} = \sqrt{\Pi P'} \tag{2.15}$$

Если необходимо учесть эффект ионной силы, то

$$S = \sqrt{\Pi P^0 \cdot \alpha_A / \gamma_{\pm}^2} \tag{2.16}$$

2.9.1. Растворение осадков гидроксидов в кислотах

Для растворения осадков гидроксидов в систематическом ходе анализа используют кислоты HCl, HNO_3 , CH_3COOH , NH_4^+ и др.

<u>Пример 1</u>. Рассчитать массу $Fe(OH)_3$, которая растворится в 100 мл 0,03 M HCl.

<u>Решение</u>. Уравнение реакции растворения Fe(OH)₃ в сильной кислоте имеет вид:

$$Fe(OH)_3 \downarrow + 3H^+ = Fe^{3+} + 3H_2O;$$

$$K = \frac{[Fe^{3+}]}{[H^+]^3} \cdot \frac{[OH^-]^3}{[OH^-]^3} = \frac{\Pi P}{K_w^3} = \frac{6.3 \cdot 10^{-38}}{(10^{-14})^3} = 6.3 \cdot 10^4.$$

Константа равновесия велика, следовательно равновесие сдвинуто вправо. Если бы вся HCl израсходовалась на растворение $Fe(OH)_3$, то концентрация железа (III) была бы 0,01 моль/л согласно стехиометрии.

Если реакция прошла не полностью, то $[Fe^{3+}] = 0.01 - x$, тогда $[H^+] = 3x$.

После подстановки равновесных концентраций ионов уравнение принимает вид:

$$\frac{0.01 - x}{(3x)^3} = 6.3 \cdot 10^4$$

Решаем это уравнение методом последовательных приближений.

Если
$$x << 0.01$$
, то $x = \sqrt[3]{\frac{0.01}{27 \cdot 6.3 \cdot 10^4}} = 1.80 \cdot 10^{-3} \text{ моль/л.}$

Далее:

$$\frac{0.01 - 0.0018}{(3x)^3}$$
 = $6.3 \cdot 10^4$; $x = \sqrt[3]{\frac{0.01 - 0.0018}{27 \cdot 6.3 \cdot 10^4}}$ = $1.69 \cdot 10^{-3}$ моль/л;

$$\frac{0.01 - 0.0017}{(3x)^3}$$
 = $6.3 \cdot 10^4$; $x = \sqrt[3]{\frac{0.01 - 0.0017}{27 \cdot 6.3 \cdot 10^4}}$ = $1.69 \cdot 10^{-3}$ моль/л.

В 100 мл растворится:

$$\frac{(0.01-0.0017)\cdot 100}{1000}\cdot 106,869 = 0.0887 \quad \varepsilon \quad Fe(OH)_3.$$

<u>Пример 2</u>. Рассчитать начальную ($C^0_{NH_4Cl}$) и равновесную ($[NH_4^+]$) концентрации ионов аммония, если в 1 л этого раствора растворилось 5,832 г $Mg(OH)_2$.

<u>Решение</u>. Рассчитаем молярную концентрацию магния в растворе ($M(Mg(OH)_2) = 58,32$):

$$[Mg^{2+}] = \frac{5,832}{58,32} = 0,1$$
 моль/л

Запишем уравнение реакции:

$$Mg(OH)_{2}\downarrow + 2NH_{4}^{+} = Mg^{2+} + 2NH_{3} + 2H_{2}O;$$

$$K = \frac{[Mg^{2+}][NH_{3}]^{2}}{[NH_{4}^{+}]^{2}} \cdot \frac{[OH^{-}]^{2}}{[OH^{-}]^{2}} = \frac{\Pi P_{Mg(OH)_{2}}}{(K^{b}_{NH_{3}})^{2}} = \frac{6.0 \cdot 10^{-10}}{(1.76 \cdot 10^{-5})^{2}} = 1.94.$$

Обозначим $x = [NH_4^+], [Mg^{2+}] = 0,1$ моль/л, $[NH_3] = 0,2$ моль/л.

После подстановки получаем:

$$\frac{0.1 \cdot (0.2)^2}{(2x)^2} = 1.94 \qquad 2x = \sqrt{\frac{0.1 \cdot (0.2)^2}{1.94}} = 0.045 \quad \text{моль} / \pi.$$

 $[NH_4^+] = 0.045 \text{ моль/л}.$

$$C^0_{NH_4Cl} = 0.2 + 0.045 = 0.245$$
 моль/л.

2.9.2. Растворение карбонатов в кислотах

<u>Пример 1</u>. При растворении CaCO₃ в кислой среде значение pH оказалось равным 4. Какова концентрация (моль/л) растворившегося карбоната кальция?

<u>Решение</u>. Запишем уравнения реакций в растворе:

$$\begin{split} &\text{CaCO}_{3}\downarrow \leftrightarrow \text{Ca}^{2^{+}} + \text{CO}_{3}^{2^{-}}; & \Pi P = [\text{Ca}^{2^{+}}] \cdot [\text{CO}_{3}^{2^{-}}]; \\ &\text{CaCO}_{3}\downarrow + \text{H}^{+} \leftrightarrow \text{Ca}^{2^{+}} + \text{HCO}_{3}^{-}; & K = \frac{[Ca^{2^{+}}][HCO_{3}^{-}]}{[H^{+}]} \cdot \frac{[CO_{3}^{2^{-}}]}{[CO_{3}^{2^{-}}]} = \frac{\Pi P}{K_{2}^{a}}; \\ &\text{CaCO}_{3}\downarrow + 2\text{H}^{+} \leftrightarrow \text{Ca}^{2^{+}} + \text{H}_{2}\text{CO}_{3}; & K = \frac{[Ca^{2^{+}}][H_{2}\text{CO}_{3}]}{[H^{+}]^{2}} \cdot \frac{[CO_{3}^{2^{-}}]}{[CO_{3}^{2^{-}}]} = \frac{\Pi P}{K_{1}^{a}K_{2}^{a}}; \\ &\text{S} = [\text{Ca}^{2^{+}}] = [\text{CO}_{3}^{2^{-}}] + [\text{HCO}_{3}^{-}] + [\text{H}_{2}\text{CO}_{3}] = \Pi P / [\text{Ca}^{2^{+}}] + \Pi P \cdot [\text{H}^{+}] / K_{2}^{a} \cdot [\text{Ca}^{2^{+}}] + \Pi P \cdot [\text{H}^{+}]^{2} / K_{1}^{a} \cdot K_{2}^{a} \cdot [\text{Ca}^{2^{+}}] + \Pi P \cdot [\text{H}^{+}]^{2} / K_{1}^{a} \cdot K_{2}^{a} \cdot [\text{Ca}^{2^{+}}] + \Pi P \cdot [\text{H}^{+}]^{2} / K_{1}^{a} \cdot K_{2}^{a} = \Pi P \cdot \alpha_{CO_{3}^{2^{-}}}, & \text{coe} \quad \alpha_{CO_{3}^{2^{-}}} = 1 + [H^{+}] / K_{2}^{a} + [H^{+}]^{2} / K_{1}^{a} \cdot K_{2}^{a} = \Pi P \cdot [\text{H}^{+}]^{2} / K_{1}^{a} \cdot K_{2}^{a} = \Pi P \cdot [\text{H}^{+}]^{2} / K_{1}^{a} \cdot K_{2}^{a} = \Pi P \cdot [\text{H}^{+}]^{2} / K_{1}^{a} \cdot K_{2}^{a} = \Pi P \cdot [\text{H}^{+}]^{2} / K_{1}^{a} \cdot K_{2}^{a} = \Pi P \cdot [\text{H}^{+}]^{2} / K_{1}^{a} \cdot K_{2}^{a} = \Pi P \cdot [\text{H}^{+}]^{2} / K_{1}^{a} \cdot K_{2}^{a} = \Pi P \cdot [\text{H}^{+}]^{2} / K_{1}^{a} \cdot K_{2}^{a} = \Pi P \cdot [\text{H}^{+}]^{2} / K_{1}^{a} \cdot K_{2}^{a} = \Pi P \cdot [\text{H}^{+}]^{2} / K_{1}^{a} \cdot K_{2}^{a} = \Pi P \cdot [\text{H}^{+}]^{2} / K_{1}^{a} \cdot K_{2}^{a} = \Pi P \cdot [\text{H}^{+}]^{2} / K_{1}^{a} \cdot K_{2}^{a} = \Pi P \cdot [\text{H}^{+}]^{2} / K_{1}^{a} \cdot K_{2}^{a} = \Pi P \cdot [\text{H}^{+}]^{2} / K_{1}^{a} \cdot K_{2}^{a} = \Pi P \cdot [\text{H}^{+}]^{2} / K_{1}^{a} \cdot K_{2}^{a} = \Pi P \cdot [\text{H}^{+}]^{2} / K_{1}^{a} \cdot [$$

Из расчета видно, что основной вклад в растворимость $CaCO_3$ в кислой среде вносит реакция с образованием H_2CO_3 .

Поэтому в кислой среде расчет можно упростить, записав только последнее уравнение реакции.

<u>Пример 2</u>. Рассчитать, сколько граммов $CaCO_3$ растворится в 100 мл 0,1 М CH_3COOH , приняв, что растворение протекает преимущественно по реакции: $CaCO_3 + 2CH_3COOH \leftrightarrow Ca^{2+} + H_2CO_3 + 2CH_3COO^{-}$.

Решение. Для данной реакции

$$K = \frac{[Ca^{2+}][H_2CO_3][CH_3COO^{-}]^2}{[CH_3COOH]^2} \cdot \frac{[CO_3^{2-}]}{[CO_3^{2-}]} \cdot \frac{[H^{+}]^2}{[H^{+}]^2} =$$

$$= \frac{\Pi P \cdot K^2_{CH_3COOH}}{K_{H_2CO_3}^1 \cdot K_{HCO_2}^2} = \frac{3.8 \cdot 10^{-9} (1.75 \cdot 10^{-5})^2}{4.5 \cdot 10^{-7} \cdot 4.8 \cdot 10^{-11}} = 5.39 \cdot 10^{-2}$$

Обозначим $[Ca^{2+}] = x$; $[H_2CO_3] = x$ и $[CH_3COO^-] = 2x$.

После подстановки получаем:

$$\frac{x \cdot (2x)^2 \cdot s}{(0.1 - 2x)^2} = 0.0539; \quad \frac{2x^2}{0.1 - 2x} = \sqrt{0.0539} = 0.232$$

 $2x^2 + 0,464x - 0,0232 = 0$. Решаем квадратное уравнение:

$$x = \frac{-0.464 + \sqrt{(0.464)^2 + 8 \cdot 0.232}}{4} = 0.0423 \mod \pi.$$

В 100 мл растворится СаСО₃ массой:

$$m(CaCO_3) = \frac{0.0423 \cdot 100}{1000} \cdot M(CaCO_3) = \frac{0.0423 \cdot 100 \cdot 100,09}{1000} = 0.4232$$
.

2.9.3. Растворение хроматов в кислотах

<u>Пример 1</u>. Рассчитать массу $BaCrO_4$, которая растворится в 500 мл 0,1 М CH_3COOH .

<u>Решение</u>. Ранее было показано, что в кислой среде в растворе хроматов доминируют частицы ${\rm Cr_2O_7^{2-}}$. Поэтому уравнение реакции растворения следует записать:

1. $2BaCrO_4 + 2CH_3COOH \leftrightarrow 2Ba^{2+} + Cr_2O_7^{2-} + H_2O + 2CH_3COO^-$.

В растворе имеют место равновесия:

2.
$$HCrO_4^- \leftrightarrow H^+ + CrO_4^{2-}, K^a_{HCrO_4^-} = \frac{[H^+][CrO_4^{2-}]}{[HCrO_4^-]} = 3,2 \cdot 10^{-7};$$

2.
$$\operatorname{Cr}_2 \operatorname{O}_7^{2-} + \operatorname{H}_2 \operatorname{O} \leftrightarrow 2 \operatorname{HCrO}_4^{-}, K_{Cr_2 O_7^{2-}} = \frac{[HCrO_4^{-}]^2}{[Cr_2 O_7^{2-}]} = 2,3 \cdot 10^{-2}$$

Константа равновесия реакции (1) равна:

$$K = \frac{[Cr_{2}O_{7}^{2-}][CH_{3}COO^{-}]^{2}[Ba^{2+}]^{2}}{[CH_{3}COOH]^{2}} \cdot \frac{[CrO_{4}^{2-}]^{2}}{[CrO_{4}^{2-}]^{2}} \cdot \frac{[HCrO_{4}^{-}]^{2}}{[HCrO_{4}^{-}]^{2}} \cdot \frac{[H^{+}]^{2}}{[H^{+}]^{2}} = \frac{\Pi P_{BaCrO_{4}}^{2} \cdot K^{2}_{CH_{3}COOH}}{K_{Cr_{3}O_{2}^{2-}} \cdot K_{HCrO_{4}^{-}}^{2}} = \frac{(1,2 \cdot 10^{-10})^{2} \cdot (1,74 \cdot 10^{-5})^{2}}{2,3 \cdot 10^{-2} \cdot (3,2 \cdot 10^{-7})^{2}} = 1,85 \cdot 10^{-15}.$$

Обозначим $[Cr_2O_7^{2-}] = x$, $[Ba^{2+}] = 2x$, $[CH_3COO^-] = 2x$, $[CH_3COOH] = 0,1-2x$.

$$\frac{(2x)^2 \cdot x \cdot (2x)^2}{(0.1 - 2x)^2} = 1.85 \cdot 10^{-15}$$

Если
$$x << 0.1$$
, то $\frac{4x^2 \cdot x \cdot 4x^2}{0.01} = 1.85 \cdot 10^{-15}$

$$x^5 = \frac{1,85 \cdot 10^{-15} \cdot 10^{-2}}{16} = 1,16 \cdot 10^{-18}, \quad x = 2,59 \cdot 10^{-4} \text{ моль} / \pi.$$

Предположение о том, что x << 0,1, подтвердилось.

Массу растворившегося осадка $BaCrO_4$ находим, принимая во внимание, что молярная масса $BaCrO_4$ равна 253,32г/моль:

$$m(BaCrO_4) = \frac{2 \cdot 2,59 \cdot 10^{-4} \cdot 500}{1000} \cdot 253,32 = 6,56 \cdot 10^{-2} \ \varepsilon.$$

_

Гл. 3. Реакции комплексообразования в аналитической химии

Комплексные соединения состоят из центрального иона (атома) М и окружающих его лигандов L. Под комплексными соединениями будем иметь в виду частицу, образованную двумя или большим числом частиц, способных к самостоятельному существованию в растворе (одной из частиц является ион металла).

Важной характеристикой координационного соединения является координационное число, показывающее число атомов или атомных группировок, непосредственно связанных с центральным ионом. Наиболее часто встречаются комплексы с координационными числами 6 и 4, реже – 2.

Лиганды характеризуются дентатностью, т.е. способностью занимать определенное число мест около центрального иона. Монодентатные лиганды $(OH^-, F^-, NH_3 \text{ и др.})$ занимают одно координационное место; бидентатные (этилендиамин H_2NCH_2 = CH_2NH_2 , $C_2O_4^{2-}$ и др.) – 2. Существуют также пента- и гексадентатные (этилендиаминтетраацетат-ион) лиганды. Полидентатные лиганды при реакции с ионом металла образуют координационные соединения, содержащие цикл, – замкнутую группировку атомов. Координационные соединения с одним или несколькими циклами называют хелатными, а сами лиганды – хелантами.

Применение комплексных соединений в анализе

1) Реакции образования комплексных соединений используют в качественном анализе для обнаружения ионов. Эти реакции сопровождаются образованием интенсивно окрашенных соединений:

$$Cu^{2^+} + 4NH_3 \leftrightarrow Cu(NH_3)_4^{2^+}$$
 ярко-синий $Fe^{3^+} + nSCN^- \leftrightarrow Fe(SCN)_n^{3-n}$ кроваво-красный

2) Реакции комплексообразования используют для растворения осадков, при разделении ионов:

$$AgCl\downarrow + 2NH_3 \leftrightarrow [Ag(NH_3)_2]^+ + Cl^-$$
$$Al(OH)_3 + OH^- \leftrightarrow [Al(OH)_4]^-$$

3) <u>Для маскирования ионов</u> в раствор вводят лиганды, образующие устойчивые комплексы. Так, ион Fe^{3+} мешает обнаружению ионов Co^{2+} , Zn^{2+} , Cd^{2+} , Cu^{2+} с реактивом $(NH_4)_2[Hg(SCN)_4]$. Концентрация тиоцианат-ионов в растворе этого реагента оказывается достаточной для образования тиоцианатного комплекса Fe(III), окрашенного в кроваво-красный цвет. Добавлением в раствор фторидионов маскируют ионы Fe^{3+} , благодаря образованию прочного комплекса $[FeF_6]^{3-}$ и устраняют мешающее влияние иона Fe^{3+} .

$$FeSCN^{2^+} + 6F^- \longleftrightarrow [FeF_6]^{3^-} + SCN$$
- кроваво-красный.

В бесцветном растворе можно наблюдать цвет и форму кристаллов, образованных ионами Co^{2+} , Zn^{2+} , Cd^{2+} , Cu^{2+} с $[Hg(SCN)_4]^{2-}$.

4) Комплексообразование влияет на окислительно-восстановительные свойства веществ, образующих комплекс.

Так, ион Co^{3+} является окислителем, а в составе комплексного иона $[Co(NH_3)_6]^{2+}$ теряет окислительные свойства.

Молибденовая кислота $H_2\text{MoO}_4$ не окисляет бензидин. Фосфорномолибденовая кислота, представляющая особый тип комплексных соединений (так называемые гетерополикислоты) и ее соли $(NH_4)_3[PMo_{12}O_{40}]\cdot xH_2O$ окисляют бензидин до дифенилбензидина синего цвета.

5) При комплексообразовании <u>изменяются</u> и <u>кислотно-основные свойства</u> веществ.

 $H_2[SiF_6]$ – кислота более сильная, чем HF; кислотные свойства $H[Ag(CN)_2]$ ярче выражены, чем у HCN.

3.1. Равновесия в растворах координационных соединений

Комплексные соединения, имеющие внешнюю координационную сферу, в среде полярных растворителей подвергаются электролитической диссоциации с полным отщеплением внешней сферы.

$$[Cu(NH_3)_4]Cl_2 \rightarrow [Cu(NH_3)_4]^{2+} + 2Cl^{-}$$

Диссоциация комплексного иона $[Cu(NH_3)_4]^{2+}$ в растворе так же, как и его образование из Cu^{2+} и NH_3 , происходит ступенчато.

В растворе имеют место следующие равновесия образования комплексных ионов:

$$Cu^{2+} + NH_{3} \leftrightarrow [Cu(NH_{3})]^{2+}, \qquad \chi_{1} = \frac{[Cu(NH_{3})^{2+}]}{[Cu^{2+}][NH_{3}]} = 9,8 \cdot 10^{3};$$

$$[Cu(NH_{3})]^{2+} + NH_{3} \leftrightarrow [Cu(NH_{3})_{2}]^{2+}, \qquad \chi_{2} = \frac{[Cu(NH_{3})_{2}^{2+}]}{[Cu(NH_{3})^{2+}][NH_{3}]} = 2,1 \cdot 10^{3};$$

$$[Cu(NH_{3})_{2}]^{2+} + NH_{3} \leftrightarrow [Cu(NH_{3})_{3}]^{2+}, \qquad \chi_{3} = \frac{[Cu(NH_{3})_{3}^{2+}]}{[Cu(NH_{3})_{2}^{2+}][NH_{3}]} = 5,7 \cdot 10^{2};$$

$$[Cu(NH_{3})_{3}]^{2+} + NH_{3} \leftrightarrow [Cu(NH_{3})_{4}]^{2+}, \qquad \chi_{4} = \frac{[Cu(NH_{3})_{4}^{2+}]}{[Cu(NH_{3})_{3}^{2+}][NH_{3}]} = 9,2 \cdot 10^{1},$$

которые характеризуются ступенчатыми константами устойчивости χ , каждая из которых соответствует присоединению одного лиганда.

Полная или общая константа устойчивости (β) характеризует равновесие ассоциации центрального иона (атома) с данным числом лигандов:

$$Cu^{2+} + NH_3 \leftrightarrow [Cu(NH_3)]^{2+}, \quad \beta_1 = \chi_1 = \frac{[Cu(NH_3)^{2+}]}{[Cu^{2+}][NH_3]};$$
 (3.1)

$$Cu^{2+} + 2NH_3 \leftrightarrow [Cu(NH_3)_2]^{2+}, \ \beta_2 = \chi_1 \cdot \chi_2 = \frac{[Cu(NH_3)_2]^{2+}}{[Cu^{2+}][NH_3]^2};$$
 (3.2)

$$Cu^{2+} + 3NH_3 \leftrightarrow [Cu(NH_3)_3]^{2+}, \ \beta_3 = \chi_1 \cdot \chi_2 \cdot \chi_3 = \frac{[Cu(NH_3)_3^{2+}]}{[Cu^{2+}][NH_3]^3};$$
 (3.3)

$$Cu^{2+} + 4NH_3 \leftrightarrow [Cu(NH_3)_4]^{2+}, \ \beta_4 = \chi_1 \cdot \chi_2 \cdot \chi_3 \cdot \chi_4 = \frac{[Cu(NH_3)_4^{2+}]}{[Cu^{2+}][NH_3]^4}. \tag{3.4}$$

Константы β_1 – β_4 , представленные уравнениями (3.1–3.4), называют концентрационными.

Соответствующие термодинамические константы обозначают $\beta_1{}^0$, $\beta_2{}^0$, $\beta_3{}^0$, $\beta_4{}^0$. Они равны:

$$\beta_n^0 = \frac{a_{[Cu(NH_3)_n]^{2^+}}}{a_{Cu^{2^+}} \cdot a_{NH_3}^n} = \beta_n \frac{\gamma_{[Cu(NH_3)_n]^{2^+}}}{\gamma_{Cu^{2^+}} \cdot \gamma_{NH_3}^n}$$
(3.5)

где у – коэффициент активности.

Если значение ионной силы раствора $I \le 0.8$, то для расчета коэффициентов активности используется уравнение:

$$\lg \gamma_i = -A z_i^2 \left(\frac{\sqrt{I}}{1 + \sqrt{I}} - 0.2 \cdot I \right), \tag{3.6}$$

где A = 0,509 (25°C), $z_i^2 = z_{ML_n}^2 - z_M^2 - nz_L^2$, z_i – заряд частицы.

После подстановки выражения (3.6) в (3.5) и преобразования получаем уравнение зависимости $\lg \beta_n$ от ионной силы раствора:

$$\lg \beta_n = \lg \beta_n^0 + A z_i^2 (\frac{\sqrt{I}}{1 + \sqrt{I}} - 0.2 \cdot I)$$
 (3.7)

3.1.1. Равновесия в растворе аммиачных комплексов. Расчет мольных долей частиц

<u>Пример 1</u>. Вычислить равновесные концентрации частиц в растворе, содержащем общие концентрации меди (II) $C^0_{Cu} = 0,01$ моль/л и аммиака $C^0_{NH_3} = 1$ моль/л (без учета ионной силы).

<u>Решение</u>. Общая концентрация меди C^0_{Cu} равна сумме равновесных концентраций частиц, существующих в растворе с учетом равновесий (3.1–3.4) $c^0_{Cu} = [Cu^{2+}] + [Cu(NH_3)]^{2+} + [Cu(NH_3)_2]^{2+} + [Cu(NH_3)_3]^{2+} + [Cu(NH_3)_4]^{2+}$

Подставив выражения для концентрации каждой комплексной частицы из уравнений (3.1–3.4), получим:

$$\begin{split} c^0{}_{Cu} &= [Cu^{2^+}] + \beta_1[Cu^{2^+}][NH_3] + \beta_2[Cu^{2^+}][NH_3]^2 + \beta_3[Cu^{2^+}][NH_3]^3 + \beta_4[Cu^{2^+}][NH_3]^4 = \\ &= [Cu^{2^+}] \left(1 + \beta_1[NH_3] + \beta_2[NH_3]^2 + \beta_3[NH_3]^3 + \beta_4[NH_3]^4\right) \end{split}$$

Мольная доля (X) каждой частицы рассчитывается по соотношениям:

$$X_{Cu^{2+}} = \frac{[Cu^{2+}]}{C_{Cu}^{0}} = \frac{1}{1 + \beta_{1}[NH_{3}] + \beta_{2}[NH_{3}]^{2} + \beta_{3}[NH_{3}]^{3} + \beta_{4}[NH_{3}]^{4}} = \frac{1}{D}; \quad (3.8)$$

$$X_{Cu(NH_3)^{2^+}} = \frac{[Cu(NH_3)^{2^+}]}{C^0_{Cu}} = \frac{\beta_1[NH_3]}{D};$$
(3.9)

$$X_{Cu(NH_3)_2^{2+}} = \frac{[Cu(NH_3)_2^{2+}]}{C^0_{Cu}} = \frac{\beta_2[NH_3]^2}{D};$$
(3.10)

$$X_{Cu(NH_3)_3^{2+}} = \frac{[Cu(NH_3)_3^{2+}]}{C^0_{Cu}} = \frac{\beta_3[NH_3]^3}{D};$$
(3.11)

$$X_{Cu(NH_3)_4^{2+}} = \frac{[Cu(NH_3)_4^{2+}]}{C^0_{Cu}} = \frac{\beta_4[NH_3]^4}{D}, \tag{3.12}$$

где
$$D = 1 + \beta_1[NH_3] + \beta_2[NH_3]^2 + \beta_3[NH_3]^3 + \beta_4[NH_3]^4$$
.

Для приближенного расчета можно принять равновесную концентрацию NH₃ равной:

$$[NH_3] = 1-4C_{NH3}^0 = 1-4\cdot(0.01) = 0.96$$
 моль/л.

Рассчитываем мольные доли и концентрации частиц в растворе:

$$X_{Cu^{2+}} = \frac{1}{(1+9,77\cdot10^3\cdot0.96+2.13\cdot10^7\cdot0.96^2+1.15\cdot10^{10}\cdot0.96^3+1.07\cdot10^{12}\cdot0.96^4)} = \frac{1}{9.19\cdot10^{11}} = 1.09\cdot10^{-12};$$

$$[Cu^{2+}] = 0.01 \cdot 1.09 \cdot 10^{-12} = 1.09 \cdot 10^{-14}$$
 моль/л;

$$X_{Cu(NH_3)^{2+}} = \frac{9,77 \cdot 10^3 \cdot 0,96}{9,19 \cdot 10^{11}} = 1,02 \cdot 10^{-8};$$

 $[Cu(NH_3)^{2+}] = 1,02 \cdot 10^{-8} \cdot 0,01 = 1,02 \cdot 10^{-10}$ моль/л;

$$X_{Cu(NH_3)_2^{2+}} = \frac{2,13 \cdot 10^7 \cdot (0,96)^2}{9,19 \cdot 10^{11}} = 2,13 \cdot 10^{-5};$$

 $[Cu(NH_3)_2^{2+}] = 2,13\cdot10^{-5}\cdot0,01 = 2,13\cdot10^{-7}$ моль/л;

$$X_{Cu(NH_3)_3^{2^+}} = \frac{1,15 \cdot 10^{10} \cdot (0,96)^3}{9.19 \cdot 10^{11}} = 1,11 \cdot 10^{-2};$$

 $[Cu(NH_3)_3^{2+}] = 1,11\cdot10^{-2}\cdot0,01 = 1,11\cdot10^{-4}$ моль/л;

$$X_{Cu(NH_3)_4^{2+}} = \frac{1,07 \cdot 10^{12} \cdot (0,96)^4}{9,19 \cdot 10^{11}} = 9,89 \cdot 10^{-1};$$

 $[Cu(NH_3)_4^{2+}] = 9.89 \cdot 10^{-1} \cdot 0.01 = 9.89 \cdot 10^{-3} \text{ моль/л.}$

Рассчитаем равновесную концентрацию $[NH_3]$ с учетом образования комплексов $[Cu(NH_3)]^{2+}$, $[Cu(NH_3)_3]^{2+}$, $[Cu(NH_3)_4]^{2+}$.

$$[NH_3] = 1 - 1,02 \cdot 10^{-10} - 2(2,13 \cdot 10^{-7}) - 3(1,11 \cdot 10^{-4}) - 4(9,89 \cdot 10^{-3}) = 0,9603 \ \text{моль/л}.$$

Эта величина совпадает с принятым в начале расчета допущением $[NH_3] = 1 - 4.0,01 = 0,96$ моль/л.

Расчет показал, что при значительной концентрации (избытке аммиака) в растворе преобладают частицы $[Cu(NH_3)_4]^{2+}$.

<u>Пример 2</u>. Вычислить равновесные концентрации [Cu²⁺] и [Cu(NH₃)₄²⁺] в растворе, содержащем общие концентрации $C^0_{Cu}=0{,}01$ моль/л, $C^0_{NH_3}=1$ моль/л без учета ступенчатого комплексообразования.

Решение. В растворе имеет место равновесие:

$$Cu^{2+} + 4NH_3 \leftrightarrow [Cu(NH_3)_4]^{2+}$$
,

$$\beta_4 = \frac{[Cu(NH_3)_4^{2+}]}{[Cu^{2+}][NH_3]^4} = 1,07 \cdot 10^{12}.$$

Обозначим $[Cu^{2+}] = x$; $[Cu(NH_3)_4^{2+}] = 0.01 - x$; $[NH_3] = 1 - 4(0.01 - x) = 0.96 + 4x$.

При x << 0,1 моль/л $[Cu(NH_3)_4^{2+}] \cong 0,01$ моль/л, $[NH_3] \cong 0,96$ моль/л.

Подставляем эти величины в уравнение:

$$\frac{0.01}{x(0.96)^4}$$
 = 1.07 · 10¹² $x = [Cu^{2+}] = 1.10 \cdot 10^{-14} \text{ моль/л.}$

Величина x совпадает с рассчитанной с учетом ступенчатого комплексообразования (пример 1).

3.2. Условные константы устойчивости

В растворе, наряду с реакциями комплексообразования:

$$M + nL \leftrightarrow ML_n$$
 (3.13)

возможно протекание конкурирующих реакций протонирования лиганда

$$L + mH^+ \leftrightarrow H_m L^{m+} \tag{3.14}$$

Заряды M и L условно опущены.

В результате протонирования равновесная концентрация лиганда L уменьшается.

Если в растворе, наряду с лигандами L, присутствуют лиганды X, то кроме ML_n образуются комплексы MX_n :

$$M + nX \leftrightarrow MX_n$$
 (3.15)

(заряды частиц также условно опущены).

Для решения многих химико-аналитических вопросов используют условные константы устойчивости.

Условная константа устойчивости записывается как:

$$\beta_{n}' = \frac{[ML_{n}]}{[M]'[L]'} \tag{3.16}$$

где [M]' — суммарная равновесная концентрация всех форм существования катиона M, за исключением ML_n ;

 $[L]'- суммарная равновесная концентрация всех форм существования <math display="block"> \text{лиганда } L, \text{ за исключением } ML_n.$

$$[M]' = [M] + [MX] + \dots \cdot [MX_n];$$

$$[L]' = [L] + [HL^+] + \dots \qquad [H_mL^{m+}].$$

Для удобства вводят вспомогательные коэффициенты α_{M} и α_{L} :

$$\alpha_{M} = \frac{[M]'}{[M]} = 1 + \beta_{1}[X] + ... + \beta_{n}[X]^{n};$$
(3.18)

$$\alpha_{L} = \frac{[L]'}{[L]} = 1 + \frac{[H^{+}]}{K_{m}^{a}} + \frac{[H^{+}]^{2}}{K_{m}^{a}K_{m-1}^{a}} + \frac{[H^{+}]^{3}}{K_{m}^{a}K_{m-1}^{a}K_{m-2}^{a}};$$
(3.19)

Подставив в уравнение (3.16) соотношения:

 $[M]' = \alpha_M \cdot [M]; [L]' = \alpha_L \cdot [L],$ получаем:

$$\beta_n' = \frac{[ML_n]}{[M][L]^n} \cdot \frac{1}{\alpha_M \alpha_I^n} = \frac{\beta_n}{\alpha_M \alpha_I^n}$$
(3.20)

Условную константу β_n вычисляют, подставляя в уравнение (3.20) величину β_n из справочника и α_M и α_L , рассчитанные по формулам (3.18, 3.19).

<u>Пример 1</u>. Вычислить условную константу устойчивости комплекса $CuЭДTA^{2-}$ при рН 3. Рассчитать равновесные концентрации $[Cu^{2+}]$ и $[ЭДTA^{4-}]$ в 0,1 М растворе $CuЭДTA^{2-}$ при рН 3 $(ЭДTA^{4-} - этилендиаминтетраацетат-ион).$

<u>Решение</u>. Константы ионизации этилендиаминтетрауксусной кислоты H_4 ЭДТА равны: $k_1{}^a = 1,02 \cdot 10^{-2}; k_2{}^a = 2,14 \cdot 10^{-3}; k_3{}^a = 6,92 \cdot 10^{-7}; k_4{}^a = 5,50 \cdot 10^{-11}.$

При рН 3 $[H^+] = 10^{-3}$ моль/л, рассчитываем α_L :

$$\alpha_{L} = 1 + \frac{1 \cdot 10^{-3}}{5,5 \cdot 10^{-11}} + \frac{(10^{-3})^{2}}{5,5 \cdot 10^{-11} \cdot 6,92 \cdot 10^{-7}} + \frac{(10^{-3})^{3}}{5,5 \cdot 10^{-11} \cdot 6,92 \cdot 10^{-7} \cdot 2,14 \cdot 10^{-3}} + \frac{(10^{-3})^{4}}{5,5 \cdot 10^{-11} \cdot 6,92 \cdot 10^{-7} \cdot 2,14 \cdot 10^{-3} \cdot 1,02 \cdot 10^{-2}} = 3,98 \cdot 10^{10}$$

Поправочный коэффициент $\alpha_M = 1$, так как отсутствуют конкурирующие лиганды:

$$\beta' = \frac{\beta_{Cu \ni JITA^{2-}}^{0}}{\alpha_L} = \frac{6.3 \cdot 10^{18}}{3.98 \cdot 10^{10}} = 1.6 \cdot 10^{8}$$

Условная константа устойчивости комплексоната меди (II) запишется как:

$$\beta = 1,6 \cdot 10^8 = \frac{[Cu \Im \Pi TA^{2-}]}{[Cu^{2+}][\Im \Pi TA^{4-}]}.$$

Обозначим $[Cu^{2+}] = [ЭДТА^{4-}]' = x; [CuЭДТА^{2-}] = 0,1-x$ и подставим в выражение для условной константы устойчивости комплексоната меди (II):

$$\frac{0.1 - x}{x^2} = 1.6 \cdot 10^8$$

Значительная величина условной константы устойчивости дает основание предположить, что x << 0.1.

Тогда 0,1-x = 0,1 и уравнение принимает вид:

$$\frac{0,1}{x^2} = 1,6 \cdot 10^8 \qquad x = \sqrt{\frac{0,1}{1,6 \cdot 10^8}} = 2,5 \cdot 10^{-5} \, \text{моль} / \, \pi.$$

$$[Cu^{2+}] = 2,5 \cdot 10^{-5}$$
 моль/л ($\alpha_M = 1$).

$$[ЭДТА^{4-}] = [ЭДТА^{4-}]' / \alpha_L = 2,5 \cdot 10^{-5} / 3,98 \cdot 10^{10} = 6,3 \cdot 10^{-16}$$
 моль/л.

3.3. Растворимость осадка за счет комплексообразования. Условное произведение растворимости

Реакции комплексообразования часто используют для растворения осадка. Пусть осадок MA растворяется в присутствии лиганда L с образованием комплексов: ML, ML_2 , ML_n .

В растворе имеют место равновесия:

$$MA \downarrow \leftrightarrow M + A, \Pi P = [M] \cdot [A];$$

$$M + nL \leftrightarrow ML_n$$
, $\beta_1 = \frac{[ML]}{[M][L]}; \dots, \beta_n = \frac{[ML_n]}{[M] \cdot [L]^n}$.

Растворимость осадка равна:

$$[M]' = [A] = [M] + [ML] + \dots ... [ML_n] = [M] + \beta_1[M][L] + \dots ... \beta_n[M][L]^n;$$

$$\alpha_{M} = \frac{[M]'}{[M]} = \frac{[M] + \beta_{1}[M][L] + ...\beta_{n}[M][L]^{n}}{[M]} = 1 + \beta_{1}[L] + ... + \beta_{n}[L]^{n};$$

 α_{M} – поправочный коэффициент, учитывающий реакции образования комплексов ML, ML2, ..., MLn.

Условное ПР' равно:

$$\Pi P' = [M]'[A] = [M] \cdot \alpha_M \cdot [A] = \Pi P \cdot \alpha_M.$$

Если растворимость S = [A] = [M]', то $S^2 = \Pi P \cdot \alpha_M$.

Растворимость осадка равна

$$S = \sqrt{\Pi P \cdot \alpha_M} \tag{3.21}$$

При избытке аниона А, равном С_А, растворимость равна:

$$S = [M]' = \frac{\Pi P \cdot \alpha_M}{C_A}$$
, t.k. $C_A + [A] \approx C_A$

С учетом значения ионной силы раствора в расчетные уравнения вносят величины коэффициентов активности:

$$S = \sqrt{\Pi P \cdot \alpha_{M} / \gamma_{\pm}^{2}}; \qquad S = \frac{\Pi P \cdot \alpha_{M}}{C_{A} \cdot \gamma_{\pm}^{2}}$$

3.4. Реакции комплексообразования при осаждении и растворении хлоридов

При расчете растворимости $PbCl_2$ в растворе HCl следует учитывать влияние одноименного Cl^- -иона и образование хлоридных комплексов свинца (II). <u>Пример 1</u>. Рассчитать растворимость (моль/л) $PbCl_2$ в избытке осадителя $c_{HCl} = 1,0$ моль/л;

- а) без учета комплексообразования;
- б) с учетом комплексообразования (без учета ионной силы).

Решение.

а) В растворе над осадком PbCl₂ имеет место равновесие:

$$PbCl_2\downarrow \longleftrightarrow Pb^{2+} + 2Cl^-, \Pi P = [Pb^{2+}][Cl^-]^2 = 1,6\cdot 10^{-5}.$$

Обозначим [Pb²⁺] = x, [Cl⁻] = $1 + 2x \approx 1$ и подставим в уравнение для ΠP_{PbCl_2} :

$$x (1 + 2x)^2 \approx x \cdot 1 = 1,6 \cdot 10^{-5};$$

 $x = [Pb^{2+}] = 1,6 \cdot 10^{-5} \text{ моль/л.}$

б) Если принять во внимание комплексообразование в растворе, содержащем PbCl₂ и HCl, то следует учесть следующие равновесия:

$$PbCl_2\downarrow \leftrightarrow Pb^{2+} + 2Cl^-, \Pi P = [Pb^{2+}] \cdot [Cl^-]^2 = 1,6 \cdot 10^{-5};$$

$$Pb^{2+} + Cl^- \leftrightarrow PbCl^+, \ \beta_1 = \frac{[PbCl^+]}{[Pb^{2+}][Cl^-]} = 41,7;$$

$$Pb^{2+} + 2Cl^{-} \leftrightarrow PbCl_{2}, \ \beta_{2} = \frac{[PbCl_{2}]}{[Pb^{2+}][Cl^{-}]^{2}} = 2,76 \cdot 10^{2};$$

$$Pb^{2+} + 3Cl^{-} \leftrightarrow PbCl_{3}^{-}, \ \beta_{3} = \frac{[PbCl_{3}^{-}]}{[Pb^{2+}][Cl^{-}]^{3}} = 1,1 \cdot 10^{2}.$$

Растворимость осадка равна:

$$\begin{split} S &= [Pb^{2+}]' = [Pb^{2+}] + [PbCl^{+}] + [PbCl_{2}] + [PbCl_{3}^{-}] = \\ &= \Pi P / [Cl^{-}]^{2} + \beta_{1} [Pb^{2+}] [Cl^{-}] + \beta_{2} [Pb^{2+}] [Cl^{-}]^{2} + \beta_{3} [Pb^{2+}] [Cl^{-}]^{3} = \\ &= \frac{\Pi P}{[Cl^{-}]^{2}} (1 + \beta_{1} [Cl^{-}] + \beta_{2} [Cl^{-}]^{2} + \beta_{3} [Cl^{-}]^{3}) = \frac{\Pi P}{[Cl^{-}]^{2}} \cdot \alpha_{Pb}; \end{split}$$

$$\alpha_{Pb} = \frac{[Pb^{2+}]'}{[Pb^{2+}]'} = 1 + \beta_1[Cl^-] + \beta_2[Cl^-]^2 + \beta_3[Cl^-]^3$$

Если принять $[Cl^-] = 1,0$ моль/л, то

$$\alpha_{Pb} = 1 + 41,7 \cdot 1 + 2,76 \cdot 10^2 \cdot 1 + 1,1 \cdot 10^2 \cdot 1 = 4,197 \cdot 10^2.$$

Условное произведение растворимости:

$$\Pi P'(PbCl_2) = \Pi P(PbCl_2)\alpha_{Pb} = 1,6\cdot 10^{-5}\cdot 4,197\cdot 10^2 = 6,72\cdot 10^{-3};$$

$$[Pb^{2+}]' = \frac{1,6 \cdot 10^{-5} \cdot 4,197 \cdot 10^{2}}{1^{2}} = 6,72 \cdot 10^{-3}$$
 моль / л.

Сравнение величин растворимости, полученных в п. а) и в п. б) показывает, что комплексообразование приводит к увеличению растворимости осадка PbCl₂.

Рассчитываем более точную равновесную концентрацию [Cl⁻], составляя уравнение материального баланса:

$$[Cl^{-}] = c^{0}_{HCl} + 2[Pb^{2+}] + [PbCl^{+}] - [PbCl_{3}^{-}];$$

Далее находим истинную равновесную концентрацию иона Pb^{2+} :

$$[Pb^{2+}] = \frac{[Pb^{2+}]'}{\alpha_{Pb}} = \frac{6,72 \cdot 10^{-3}}{4,197 \cdot 10^{2}} = 1,6 \cdot 10^{-5} \text{ моль / л};$$

и числовые значения всех слагаемых:

$$\begin{split} [PbCl^+] &= \beta_1 [Pb^{2^+}] [Cl^-] = 41, 7 \cdot 1, 6 \cdot 10^{-5} \cdot 1 = 6, 68 \cdot 10^{-4} \, \text{моль/}\pi; \\ [PbCl_3^-] &= \beta_3 [Pb^{2^+}] [Cl^-]^3 = 1, 1 \cdot 10^2 \cdot 1, 6 \cdot 10^{-5} \cdot 1^3 = 1, 76 \cdot 10^{-3} \, \text{моль/}\pi; \\ [Cl^-] &= 1 + 2 \cdot 1, 6 \cdot 10^{-5} + 6, 68 \cdot 10^{-4} - 1, 76 \cdot 10^{-3} \approx 1, 0 \, \text{моль/}\pi. \end{split}$$

Эта величина совпадает с принятой для расчета растворимости $[Cl^-] = 1,0$ моль/л.

<u>Пример 2</u>. Вычислить растворимость AgCl в 0,01 M HCl

<u>Решение</u>. В растворе имеют место равновесия:

$$AgCl\downarrow \leftrightarrow Ag^{+} + Cl^{-}, \qquad \PiP = [Ag^{+}] \cdot [Cl^{-}];$$

$$Ag^{+} + Cl^{-} \leftrightarrow AgCl, \qquad \beta_{1} = \frac{[AgCl]}{[Ag^{+}][Cl^{-}]} = 1,1 \cdot 10^{3}$$

$$Ag^{+} + 2Cl^{-} \leftrightarrow AgCl_{2}^{-}, \qquad \beta_{2} = \frac{[AgCl_{2}^{-}]}{[Ag^{+}][Cl^{-}]^{2}} = 1,1 \cdot 10^{5}$$

$$Ag^{+} + 3Cl^{-} \leftrightarrow AgCl_{3}^{-}, \qquad \beta_{3} = \frac{[AgCl_{3}^{-}]}{[Ag^{+}][Cl^{-}]^{3}} = 1,1 \cdot 10^{5}$$

Принимаем [Cl⁻] = 10^{-2} моль/л и рассчитываем:

$$\alpha_{Ag}\!\!=\!\![Ag^{\scriptscriptstyle +}]'\!/\,Ag^{\scriptscriptstyle +}]\!=1+\beta_1[Cl^{\scriptscriptstyle -}]+\beta_2[Cl^{\scriptscriptstyle -}]^2+\beta_3[Cl^{\scriptscriptstyle -}]^3.$$

$$\alpha_{\mathrm{Ag}} = 1 + 1, 1 \cdot 10^{3} \cdot 10^{-2} + 1, 1 \cdot 10^{5} \cdot (10^{-2})^{2} + 1, 1 \cdot 10^{5} \cdot (10^{-2})^{3} = 23, 11.$$

$$S = [Ag^+]' = \frac{\Pi P'}{[Cl^-]} = \frac{\Pi P \cdot \alpha_{Ag}}{[Cl^-]} = \frac{1,78 \cdot 10^{-10} \cdot 23,11}{10^{-2}} = 4,11 \cdot 10^{-7} \, \text{моль} / \, \pi.$$

AgCl не растворяется в 0,01 M HCl, так как хлоридные комплексы серебра (I) имеют невысокую устойчивость.

Для отделения серебра от остальных хлоридов осадок обрабатывают раствором аммиака. Осадок AgCl растворяется в NH_3 .

<u>Пример 3</u>. Вычислить растворимость (моль/л) AgCl в растворе 0,1 M NH₃:

- а) с учетом ступенчатого комплексообразования;
- б) без учета ступенчатого комплексообразования.

<u>Решение</u>. а) В водном растворе, содержащем осадок AgCl и NH₃, имеют место равновесия:

$$AgCl\downarrow \leftrightarrow Ag^{+} + Cl^{-}, \qquad \Pi P = [Ag^{+}] \cdot [Cl^{-}] = 1,78 \cdot 10^{-10};$$

$$Ag^{+} + NH_{3} \leftrightarrow Ag(NH_{3})^{+}, \qquad \beta_{1} = \frac{[AgNH_{3}^{+}]}{[Ag^{+}][NH_{3}]} = 2.09 \cdot 10^{3};$$

$$Ag^{+} + 2NH_{3} \leftrightarrow Ag(NH_{3})_{2}^{+}, \qquad \beta_{2} = \frac{[Ag(NH_{3})_{2}^{+}]}{[Ag^{+}][NH_{3}]^{2}} = 1,70 \cdot 10^{7}.$$

Условное произведение растворимости равно:

$$\Pi P' = [Ag^+]'[Cl^-] = \Pi P \cdot \alpha_{Ag},$$
 где

 $[Ag^+]' = Ag^+ + [Ag(NH_3)^+] + [Ag(NH_3)_2^+] = [Ag^+] + [Ag^+] \cdot [NH_3] \cdot \beta_1 + [Ag^+] \cdot [NH_3]^2 \cdot \beta_2 = [Ag^+](1 + \beta_1 \cdot [NH_3] + \beta_2 \cdot [NH_3]^2);$

$$\alpha_{Ag} = \frac{[Ag^{+}]'}{[Ag^{+}]} = 1 + \beta_{1}[NH_{3}] + \beta_{2}[NH_{3}]^{2} = 1 + 2,09 \cdot 10^{3} \cdot 0,1 + 1,70 \cdot 10^{7} \cdot (0,1)^{2} = 1,70 \cdot 10^{5}.$$

Для расчета принимаем [NH₃] = $C^0_{NH_3}$ = 0,1 моль/л.

$$S = [Ag^+]' = \sqrt{\Pi P'} = \sqrt{\Pi P \cdot \alpha_{Ag}} = \sqrt{1,78 \cdot 10^{-10} \cdot 1,70 \cdot 10^5} = 5,5 \cdot 10^{-3}$$
 моль / л.

Для проверки правильности такого допущения рассчитаем равновесные концентрации частиц в полученном растворе:

$$[Ag^{+}] = \frac{[Ag^{+}]'}{\alpha_{Ag}} = \frac{5.5 \cdot 10^{-3}}{1.70 \cdot 10^{5}} = 3.24 \cdot 10^{-8} \,\text{моль} / \,\pi.$$

$$[Ag(NH_3)^+]$$
 = 3,24 · 10⁻⁸ · 2,09 · 10³ (0,1 - x - y) ≈ 3,24 · 10⁻⁸ · 2,09 · 10³ · 0,1 = 6,77 · 10⁻⁶ моль / π .

$$[Ag(NH_3)_2^+] = 3,24 \cdot 10^{-8} \cdot 1,70 \cdot 10^7 (0,1-x-2y)^2 \approx 3,24 \cdot 10^{-8} \cdot 1,70 \cdot 10^7 (0,1)^2 = 5,51 \cdot 10^{-3} \, \text{моль} / \, \pi.$$

Равновесная концентрация $[NH_3] = C_{NH3}^0 - [AgNH_3^+] - 2[Ag(NH_3)_2^+] = C_{NH3}^0 - [AgNH_3^+] - C_{NH3}^0 - [AgNH_3^+] - C_{NH3}^0 - C_{NH$

=
$$0.1 - 6.77 \cdot 10^{-6} - 2 \cdot 5.51 \cdot 10^{-3} = 0.1 - 0.011 \approx 0.089$$
 моль/л.

Рассчитаем α_{Ag} при $[NH_3] = 0,089$ моль/л

$$\alpha_{Ag} = 1 + 2,09 \cdot 10^{3} \cdot 0,089 + 1,70 \cdot 10^{7} \cdot (0,089)^{2} = 1,347 \cdot 10^{5}$$

$$S = [Ag^+]' = \sqrt{1,78 \cdot 10^{-10} \cdot 1,347 \cdot 10^5} = \sqrt{2,398 \cdot 10^{-5}} = 4,90 \cdot 10^{-3}$$
 моль / л.

Следовательно, новое значение равновесной концентрации иона Ag⁺ будет равно:

$$[Ag^{+}] = \frac{[Ag^{+}]^{'}}{\alpha_{Ag}} = \frac{4,90 \cdot 10^{-3}}{1,347 \cdot 10^{5}} = 3,64 \cdot 10^{-8} \text{ моль / л};$$

$$[Ag(NH_3)^+] = 3,64 \cdot 10^{-8} \cdot 2,09 \cdot 10^3 \cdot 0,089 = 6,77 \cdot 10^{-6} \text{ моль} / \pi;$$

$$[Ag(NH_3)_2^+] = 3.64 \cdot 10^{-8} \cdot 1.70 \cdot 10^7 \cdot 0.089^2 = 4.90 \cdot 10^{-3} \, \text{моль} / \, \pi;$$

Равновесная концентрация NH_3 составляет: $[NH_3] = 0,1 - 6,77 \cdot 10^{-6} - 2 \cdot 4,90 \cdot 10^{-3} = 0,1 - 0,0098 = 0,090$ моль/л, что согласуется с принятой $[NH_3] = 0,089$ моль/л.

б) Расчет с учетом ступенчатого комплексообразования показал, что растворимость $AgCl\ B\ NH_3$ обусловлена преимущественным образованием комплекса состава $Ag(NH_3)_2^+$.

Реакция растворения AgCl без учета ступенчатого комплексообразования запишется:

$$AgCl\downarrow + 2NH_3 \leftrightarrow Ag(NH_3)_2^+ + Cl^-;$$

$$K = \frac{[Ag(NH_3)_2^+][Cl^-]}{[NH_3]^2} \cdot \frac{[Ag^+]}{[Ag^+]} = \Pi P_{AgCl} \cdot \beta_2 = 1,78 \cdot 10^{-10} \cdot 1,70 \cdot 10^7 = 3,0 \cdot 10^{-3}.$$

Обозначим $[Ag(NH_3)_2^+] = [Cl^-] = x$, $[NH_3] = 0,1 - 2x$

и подставим в выражение константы равновесия:

$$\frac{x^2}{(0,1-2x)^2} = 3,0 \cdot 10^{-3}; \qquad \frac{x}{0,1-2x} = 5,48 \cdot 10^{-2};$$

$$x = 5,48 \cdot 10^{-3} - 1,096 \cdot 10^{-1} \cdot x$$
; $1,096x = 5,48 \cdot 10^{-3}$,

 $x = 4.94 \cdot 10^{-3}$ моль/л.

Полученная величина совпадает с рассчитанной в п. а) $S = 4,90 \cdot 10^{-3}$ моль/л.

В отличие от AgCl \downarrow осадок Hg $_2$ Cl $_2$ не растворим в аммиаке. При действии NH $_3$ на Hg $_2$ Cl $_2$ \downarrow образуется комплексное соединение:

$$Hg_2Cl_2\downarrow + 2NH_3 \rightarrow [NH_2Hg_2]Cl\downarrow + NH_4^+ + Cl^-,$$

которое распадается:

$$[NH_2Hg_2]Cl\!\downarrow \to NH_2HgCl\!\downarrow + Hg\!\downarrow$$

Вследствие образования Hg↓ осадок чернеет (оба амидосоединения ртути белого цвета).

3.5. Образование гидроксокомплексов при осаждении и растворении гидроксидов

Отделение катионов IV аналитической группы в ходе систематического анализа кислотно-основным методом основано на растворении гидроксидов в избытке NaOH вследствие их амфотерности. При этом образуются гидроксокомплексы $Al(OH)_4^-$, $Zn(OH)_4^{2-}$, $Cr(OH)_4^-$, $Sn(OH)_4^{2-}$, $Sn(OH)_6^{2-}$ и т. д. В присутствии H_2O_2 тетрагидроксохромит-ион окисляется до CrO_4^{2-} .

<u>Пример 1</u>. Рассчитать растворимость $Al(OH)_3$ при значении pH раствора, равном 13.

Решение. В растворе имеют место равновесия:

$$Al(OH)_3 \downarrow \leftrightarrow Al^{3+} + 3OH^-, \qquad \Pi P = [Al^{3+}] \cdot [OH^-]^3 = 10^{-32};$$

$$Al^{3+} + OH^{-} \leftrightarrow AlOH^{2+}, \qquad \beta_{1} = \frac{[AlOH^{2+}]}{[Al^{3+}][OH^{-}]} = 1,07 \cdot 10^{9};$$

$$Al^{3+} + 2OH^{-} \leftrightarrow Al(OH)_{2}^{+}, \qquad \beta_{2} = \frac{[Al(OH)_{2}^{+}]}{[Al^{3+}][OH^{-}]^{2}} = 5,0 \cdot 10^{18};$$

$$Al^{3+} + 3OH^{-} \leftrightarrow Al(OH)_{3}, \qquad \beta_{3} = \frac{[Al(OH)_{3}]}{[Al^{3+}][OH^{-}]^{3}} = 10^{27};$$

$$Al^{3+} + 4OH^{-} \leftrightarrow Al(OH)_{4}^{-}, \qquad \beta_{4} = \frac{[Al(OH)_{4}^{-}]}{[Al^{3+}][OH^{-}]^{4}} = 10^{33}$$

В растворе при рН 13 равновесная концентрация OH^- -ионов составляет: $[OH^-] = 10^{-1} \text{ моль/л}$ (рOH = 14 - 13 = 1).

Растворимость осадка равна:

$$S = [Al^{3+}]' = [Al^{3+}] + [AlOH^{2+}] + [Al(OH)_{2}^{+}] + [Al(OH)_{3}] + [Al(OH)_{4}^{-}] =$$

$$= \frac{\Pi P}{[OH^{-}]^{3}} + \frac{\Pi P}{[OH^{-}]^{3}} \cdot [OH^{-}]\beta_{1} + \frac{\Pi P}{[OH^{-}]^{3}} \cdot [OH^{-}]^{2}\beta_{2} + \frac{\Pi P}{[OH^{-}]^{3}} \cdot [OH^{-}]^{3}\beta_{3} +$$

$$+ \frac{\Pi P}{[OH^{-}]^{3}} \cdot [OH^{-}]^{4}\beta_{4} = \frac{\Pi P}{[OH^{-}]^{3}} (1 + \beta_{1}[OH^{-}] + \beta_{2}[OH^{-}]^{2} + \beta_{3}[OH^{-}]^{3} +$$

$$+ \beta_{4}[OH^{-}]^{4}) = \frac{\Pi P}{[OH^{-}]^{3}} \cdot \alpha_{Al};$$

Вычислим коэффициент побочной реакции иона А1³⁺:

 $\alpha_{A1} = 1 + \beta_1 [OH^-] + \beta_2 [OH^-]^2 + \beta_3 [OH^-]^3 + \beta_4 [OH^-]^4 = 1 + 1,07 \cdot 10^9 \cdot 10^{-1} + 9,0 \cdot 10^{18} \cdot (10^{-1})^2 + 10^{27} \cdot (10^{-1})^3 + 10^{33} \cdot (10^{-1})^4 = 10^{29}.$

$$S = [Al^{3+}]' = \frac{\Pi P}{[OH^{-}]^{3}} \cdot \alpha_{Al} = \frac{10^{-32} \cdot 10^{29}}{(10^{-1})^{3}} = 1,00 \mod \pi.$$

Сопоставляя слагаемые при расчете α_{Al} , видим, что основной вклад в растворимость $Al(OH)_3$ в щелочной среде вносит образование комплекса $Al(OH)_4$.

Поэтому задачу можно упростить, ограничившись рассмотрением реакции:

$$Al(OH)_3\downarrow + OH^- \leftrightarrow Al(OH)_4^-$$

$$K = \frac{[Al(OH)_4^-]}{[OH^-]} \cdot \frac{[Al^{3+}][OH^-]^3}{[Al^{3+}][OH^-]^3} = \Pi P_{Al(OH)_3} \cdot \beta_4 = 10^{-32} \cdot 10^{33} = 10$$

Обозначим $[Al(OH)_4^-] = x$, тогда

$$\frac{x}{10^{-1}} = 10$$
 $x = [Al(OH)_4^-] = 1$ моль/л,

что совпадает с рассчитанным ранее значением.

<u>Пример 2</u>. Рассчитать растворимость (моль/л) Al(OH)₃ в 0,1 M NH₃.

<u>Решение</u>. Запишем уравнение реакции, используя предыдущий вывод о доминировании в растворе $Al(OH)_4$ ⁻:

$$Al(OH)_3\downarrow + NH_3 + H_2O \leftrightarrow Al(OH)_4^- + NH_4^+,$$

$$K = \frac{[Al(OH)_4^{-1}][NH_4^{+1}]}{[NH_3]} \cdot \frac{[Al^{3+1}][OH^{-1}]^3}{[Al^{3+1}][OH^{-1}]^3} = \Pi P_{Al(OH)_3} \cdot \beta_4 \cdot K^b_{NH_3} = 10^{-32} \cdot 10^{33} \cdot 1,76 \cdot 10^{-5} = 1,76 \cdot 10^{-4}.$$

Обозначим $[Al(OH)_4^-] = x$, $[NH_4^+] = x$, $[NH_3] = 0, 1 - x$ и подставим в уравнение:

$$1,76 \cdot 10^{-4} = \frac{x^2}{0.1 - x};$$
 $x^2 + 1,76 \cdot 10^{-4}x - 1,76 \cdot 10^{-5} = 0;$

$$x = -0.88 \cdot 10^{-4} + \sqrt{0.77 \cdot 10^{-8} + 1.76 \cdot 10^{-5}} = 4.20 \cdot 10^{-3}$$
 моль / л.

<u>Пример 3</u>. Рассчитать, при каком pH обеспечивается наиболее полное осаждение $Al(OH)_3$ (без учета ступенчатого комплексообразования).

<u>Решение</u>. Было показано, что в щелочной среде имеют место в основном равновесия:

$$Al(OH)_3 \downarrow \leftrightarrow Al^{3+} + 3OH^-, \Pi P = [Al^{3+}] \cdot [OH^-]^3 = 10^{-32};$$

 $Al(OH)_3 \downarrow + OH^- \leftrightarrow Al(OH)_4^-,$

$$K = \frac{[Al(OH)_4^-]}{[OH^-]} = \Pi P_{Al(OH)_3} \cdot \beta_4 = 10^{-32} \cdot 10^{33} = 10$$

Растворимость осадка равна:

$$S = [AI^{3+}] + [AI(OH)_4] = \Pi P \cdot [OH^-]^{-3} + 10[OH^-].$$

Для определения условий оптимизации вычисляем первую производную $\frac{dS}{d[OH^-]}$ и приравниваем ее к нулю:

$$\frac{dS}{d[OH^-]} = (-3) \cdot 10^{-32} [OH^-]^{-4} + 10 = 0; \quad [OH^-] = \sqrt[4]{\frac{3 \cdot 10^{-32}}{10}} = 7,4 \cdot 10^{-9} \text{ моль / л.}$$

$$pOH = -\lg (7,4 \cdot 10^{-9}) = 8,87; pH = 14 - 8,87 = 5,28.$$

3.6. Образование аммиачных комплексов при осаждении и растворении гидроксидов

Гидроксиды VI аналитической группы ($Co(OH)_2$, $Ni(OH)_2$, $Cu(OH)_2$, $Cd(OH)_2$, $HgO (Hg(OH)_2)$, а также $Zn(OH)_2$, $Ag_2O (AgOH)$ растворимы в избытке NH_3 с образованием аммиачных комплексов.

<u>Пример 1</u>. Вычислить растворимость, моль/л, $Cu(OH)_2$ в 0,01 M NH_3 :

- а) без учета ступенчатого комплексообразования;
- б) с учетом ступенчатого комплексообразования.

Решение.

а) Запишем уравнение реакции:

$$Cu(OH)_{2}\downarrow + 4NH_{3} = Cu(NH_{3})_{4}^{2+} + 2OH^{-};$$

$$K = \frac{[Cu(NH_{3})_{4}^{2+}][OH^{-}]^{2}}{[NH_{3}]^{4}} \cdot \frac{[Cu^{2+}]}{[Cu^{2+}]} = \Pi P_{Cu(OH)_{2}} \cdot \beta_{4} = 8.3 \cdot 10^{-20} \cdot 1.07 \cdot 10^{12} = 8.88 \cdot 10^{-8}.$$

В первом приближении обозначим [NH₃] = $0.01 - 4x \approx 0.01$;

 $[Cu(NH_3)_4^{2+}] = x$. Вычислим равновесную концентрацию OH⁻-ионов в 0,01 M растворе аммиака:

$$NH_3 + H_2O \leftrightarrow NH_4^+ + OH^-, K^b_{NH_3} = \frac{y_1^2}{0.01 - y_1} = 1.76 \cdot 10^{-5};$$

 $0.01 - y_1$ y_1 y_1

$$y_1^2 + 1,76 \cdot 10^{-5} y_1 - 1,76 \cdot 10^{-7} = 0;$$
 $y_1 = 4,11 \cdot 10^{-4}$ моль/л.

Подставим равновесные концентрации частиц в выражение константы равновесия и рассчитаем x:

$$\frac{x(4,11\cdot 10^{-4})^2}{(0,01)^4} = 8,88\cdot 10^{-8}; \qquad x = \frac{8,88\cdot 10^{-8}\cdot 10^{-8}}{(4,11\cdot 10^{-4})^2} = 5,26\cdot 10^{-9} \text{ моль}/ \pi.$$

Концентрация [OH⁻] вследствие диссоциации аммиака и растворимости осадка будет определена следующим образом:

$$NH_3 + H_2O \leftrightarrow NH_4^+ + OH^-, K^b_{NH_3} = \frac{y_2^2}{0.01 - y_2} = 1.76 \cdot 10^{-5};$$

$$0.01 - y_2$$
 y_2 y_2

Вводим обозначения [NH₃] = $0.01 - 4.5.26 \cdot 10^{-9} - y_2 \approx 0.01 - y_2$;

$$[NH_4^+] = y_2;$$

С учетом стехиометрических коэффициентов реакции растворения Сu(OH)2:

$$[OH^{-}] = 2.5,26.10^{-9} + y_2 \approx y_2.$$

Эти величины совпадают с предыдущими:

$$y_2 = 4,11 \cdot 10^{-4}$$
 моль/л.

Следовательно, растворимость $Cu(OH)_2$ равна 5,26·10⁻⁹ моль/л.

б) Решение. Уравнения реакций в растворе можно записать:

$$Cu(OH)_2\downarrow \leftrightarrow Cu^{2+} + 2OH^-, \Pi P(Cu(OH)_2) = [Cu^{2+}][OH^-]^2 = 8,3\cdot 10^{-20};$$

 $Cu^{2+} + nNH_3 \leftrightarrow Cu(NH_3)_n^{2+} (n = 1 \div 4).$

Условное произведение растворимости равно:

 $\Pi P' = \Pi P \cdot \alpha_{Cu}$, где

$$\alpha_{Cu} = \frac{[Cu^{2+}]'}{[Cu^{2+}]} = 1 + \beta_1[NH_3] + \beta_2[NH_3]^2 + \beta_3[NH_3]^3 + \beta_4[NH_3]^4.$$

Принимаем, что $[NH_3] \approx 0.01$ моль/л и вычисляем α_{Cu} :

$$\alpha_{Cu} = 1 + 9,77 \cdot 10^{3} \cdot 0,01 + 2,17 \cdot 10^{7} \cdot (0,01)^{2} + 1,15 \cdot 10^{10} \cdot (0,01)^{3} + 1,07 \cdot 10^{12} \cdot (0,01)^{4} = 2,44 \cdot 10^{4}.$$

$$\Pi P' = 8,3 \cdot 10^{-20} \cdot 2,44 \cdot 10^4 = 2,03 \cdot 10^{-15}$$

Таким образом, ПР' =[Cu^{2+}]'[OH^-]² = 2,03·10⁻¹⁵ и

$$[Cu^{2+}]' = \frac{2.03 \cdot 10^{-15}}{[OH^{-}]^{2}}$$

Предыдущий расчет показал, что можно принять для расчета равновесную концентрацию гидроксид-ионов $[OH^-]$, рассчитанную на основании ионизации NH_3 , т.е. $[OH^-] = 4,11\cdot10^{-4}$ моль/л.

$$[Cu^{2+}]' = \frac{2.03 \cdot 10^{-15}}{(4.11 \cdot 10^{-4})^2} = 1.20 \cdot 10^{-8} \,\text{моль}/\,\pi.$$

Эта величина больше полученной в п. а)($5,26\cdot10^{-9}$ моль/л $< 1,20\cdot10^{-8}$ моль/л). Рассчитаем концентрацию комплексов меди(II) в полученном растворе:

$$[Cu^{2+}] = \frac{[Cu^{2+}]'}{\alpha_{Cu}} = \frac{1,20 \cdot 10^{-8}}{2,44 \cdot 10^{4}} = 4,92 \cdot 10^{-13} \,\text{моль}/\pi;$$

$$\begin{split} & [Cu(NH_3)^{2^+}] = \beta_1[Cu^{2^+}][NH_3] = 9,77\cdot 10^3\cdot 4,92\cdot 10^{-13}\cdot 0,01 = 4,80\cdot 10^{-11} \text{ моль/л}; \\ & [Cu(NH_3)_2^{2^+}] = \beta_2[Cu^{2^+}][NH_3]^2 = 2,17\cdot 10^7\cdot 4,92\cdot 10^{-13}\cdot (0,01)^2 = 1,07\cdot 10^{-10} \text{ моль/л}; \end{split}$$

$$[Cu(NH_3)_3{}^{2^+}] = \beta_3[Cu^{2^+}][NH_3]^3 = 1,15\cdot 10^{10}\cdot 4,92\cdot 10^{-13}\cdot (0,01)^3 = 5,66\cdot 10^{-9} \text{ моль/л};$$

$$[Cu(NH_3)_4^{2^+}] = \beta_4[Cu^{2^+}][NH_3]^4 = 1,07 \cdot 10^{12} \cdot 4,92 \cdot 10^{-13} \cdot (0,01)^4 = 5,26 \cdot 10^{-9} \text{ моль/л}.$$

Составляем материальный баланс по NH_3 и рассчитываем равновесную концентрацию NH_3 в полученном растворе:

$$[NH_3] = C^0_{NH3} - [Cu(NH_3)^{2^+}] - 2[Cu(NH_3)_2^{2^+}] - 3[Cu(NH_3)_3^{2^+}] - 4[Cu(NH_3)_4^{2^+}] = 0,01 - 4.8 \cdot 10^{-11} - 2(1,07 \cdot 10^{-10}) - -3(5,66 \cdot 10^{-9}) - 4(5,26 \cdot 10^{-9}) = 0,01$$
 моль/л.

Эта величина равна принятой в расчете $[NH_3] = 0.01$ моль/л.

Расчет с учетом ступенчатого комплексообразования дает величину растворимости $Cu(OH)_2$ почти в 2 раза большую по сравнению с растворимостью, рассчитанной без учета ступенчатого комплексообразования.

Величина, полученная в п. б) (с учетом ступенчатого комплексообразования), является более объективной.

Гл. 4. Реакции окисления-восстановления

В аналитической химии реакции окисления-восстановления используются для обнаружения ионов ($Mn^{2+} \rightarrow MnO_4^-$ (малин.); $Cr_2O_7^{2-} \rightarrow CrO_5$ (син.) и т.д.).

$$2Mn^{2+} + 5PbO_2 + 4H^+ = 2MnO_4^- + 5Pb^{2+} + 2H_2O$$

 $Cr_2O_7^{2-} + 4H_2O_2 + 2H^+ = 2CrO_5 + 5H_2O_5$

для осаждения и растворения осадков:

$$Mn^{2+} + H_2O_2 + 2OH^- = MnO(OH)_{2 \text{ TB.}} + H_2O;$$

 $MnO(OH)_{2 \text{ TB.}} + H_2O_2 + 2H^+ = Mn^{2+} + O_2 + 3H_2O.$

Характерной особенностью реакций окисления-восстановления является переход электронов от одной реагирующей частицы к другой. Частицу, принимающую электрон, называют окислителем, а отдающую электрон – восстановителем.

Каждую окислительно-восстановительную реакцию, например,

$$MnO(OH)_{2 \text{ TB}} + H_2O_2 + 2H^+ = Mn^{2+} + O_2 + 3H_2O_3$$

можно представить как сумму двух полуреакций, одна из которых отражает превращение окислителя:

$$MnO(OH)_{2 \text{ TB.}} + 4H^+ + 2\bar{e} \rightarrow Mn^{2+} + 3H_2O$$

другая – восстановителя:

$$H_2O_2 - 2\bar{e} \rightarrow O_2 + 2H^+$$
.

Суммирование полуреакций дает уравнение химической реакции. Причем в соответствии с законом электронейтральности раствора число электронов, отдаваемых восстановителем, должно быть равно числу электронов, принимаемых окислителем.

4.1. Окислительно-восстановительные потенциалы

Разделение окислительно-восстановительной реакции на полуреакции имеет определенный физический смысл. Компоненты каждой полуреакции можно поместить в разные сосуды и соединить их солевым мостиком. Если в каждый сосуд опустить инертные электроды и замкнуть их на гальванометр, то прибор

покажет наличие тока в цепи. Таким образом получают гальванические элементы. При проведении реакции в гальваническом элементе химическая энергия превращается в электрическую. ЭДС гальванического элемента является разностью потенциалов двух электродов (или полуэлементов):

ЭДС =
$$E_1 - E_2$$
,

где E_1 – потенциал окислителя; E_2 – потенциал восстановителя.

Каждый полуэлемент представляет собой систему из окисленной и восстановленной форм данного вещества, так называемую окислительновосстановительную (редокс) пару. Абсолютное значение потенциала редокс-пары измерить нельзя. Относительные характеристики получают, комбинируя данный электрод (полуэлемент) с одним и тем же стандартным электродом. В качестве такого электрода выбран стандартный водородный электрод. Это платиновый электрод, покрытый «платиновой чернью», омываемый газообразным водородом при давлении в 1 атм и погруженный в раствор кислоты с $\alpha_{H^+} = 1$:

$$H_2(\Gamma) = 2H^+ + 2\bar{e}$$
.

Потенциал стандартного водородного электрода принят равным нулю при всех температурах, т.е. $E^0_{\ 2H^+/H_2} = 0$.

Тогда ЭДС = E_1 , т.е. потенциал данного электрода – это ЭДС элемента, состоящего из данного и стандартного водородного электрода.

Зависимость окислительно-восстановительного потенциала Е от концентрации и температуры передается уравнением Нернста:

$$E = E^0 + \frac{RT}{nF} \ln \frac{\alpha_{o\kappa}}{\alpha_{eoc}}.$$

Здесь E^0 — стандартный окислительно-восстановительный потенциал; R — универсальная газовая постоянная (8.31 Дж/моль·К); T — абсолютная температура; F — постоянная Фарадея (96500 Кл); n — число электронов, принимающих участие в электродном процессе; $\alpha_{\text{ок}}$ и $\alpha_{\text{вос}}$ — активности окисленной и восстановленной форм вещества, соответственно.

Если все участники полуреакции находятся в стандартном состоянии (при активности, равной единице), то

$$\ln \frac{\alpha_{o\kappa}}{\alpha_{goc}} = \ln \frac{[o\kappa]}{[goc]} \cdot \frac{\gamma_{o\kappa}}{\gamma_{goc}} = \ln 1 = 0$$

$$M \quad E = E^{0}$$

Стандартным окислительно-восстановительным потенциалом называется потенциал системы, в которой все участники полуреакции находятся в стандартном состоянии, а растворенные вещества – в стандартном растворе.

Стандартный окислительно-восстановительный потенциал является количественной характеристикой силы окислителя и восстановителя. Чем более положительное значение потенциала (E^0) , тем более сильным является окислитель; чем меньше величина E^0 , тем сильнее выражены восстановительные свойства.

С помощью стандартных окислительно-восстановительных потенциалов пар можно предсказать направление окислительно-восстановительной реакции.

Окислительно-восстановительная реакция протекает в том направлении, в котором $E^0_1 - E^0_2$ имеет положительное значение.

Пример. В каком направлении пойдет реакция

$$2Fe^{3+} + 2I^{-} \leftrightarrow 2Fe^{2+} + I_{2}$$

в сторону окисления ионов Fe^{2+} свободным иодом или в обратном направлении ? <u>Решение</u>. Из справочника Лурье Ю.Ю. (табл. на стр. 276) выпишем значения стандартных потенциалов редокс-пар:

Поскольку ЭДС = $E^0_1 - E^0_2 = E^0_{Fe^{3+}/Fe^{2+}} - E^0_{I_2/2I^-} = 0,77 - 0,53 = 0,24 \text{ B} > 0$, то реакция пойдет в направлении, указанном стрелкой.

Ионы железа являются более сильным окислителем, чем свободный иод; а при любом окислительно-восстановительном процессе из взятых окислителя и восстановителя образуются более слабые окислитель и восстановитель, чем исходные.

4.2. Факторы, влияющие на величину окислительно-восстановительного потенциала

1) Кислотность раствора

Влияние концентрации веществ, участвующих в электродной реакции, в том числе и кислотности раствора, на редокс-потенциал передается уравнением Нернста.

$$Cr_2O_7^{2-} + 14H^+ + 6\bar{e} \rightarrow 2Cr^{3+} + 7H_2O$$

$$E_{Cr_2O_7^{2-}/2Cr^{3+}} = E^0_{Cr_2O_7^{2-}/2Cr^{3+}} + \frac{0,059}{6} \lg \frac{[Cr_2O_7^{2-}][H^+]^{14}}{[Cr^{3+}]^2}.$$

Можно видеть, что с ростом концентрации ионов водорода потенциал пары $Cr_2O_7{}^{2-}/\,2Cr^{3+}\, увеличивается.$

Иногда кислотность раствора оказывает влияние на потенциал, хотя концентрации ионов H^+ и OH^- не входят в уравнение Нернста. Это связано с тем, что кислотность раствора влияет на формы существования ионов, подавляя или усиливая, например, гидролитические процессы.

Потенциал системы Fe^{3+} / Fe^{2+} при увеличении кислотности возрастает, т.к. введение кислоты подавляет диссоциацию акваиона железа (III):

$$Fe(H_2O)_6^{3+} \leftrightarrow Fe(H_2O)_5OH^{2+} + H^+,$$

увеличивая тем самым равновесную концентрацию ионов Fe^{3+} , которая входит в уравнение Нернста:

$$E_{Fe^{3+}/Fe} = E^{0}_{Fe^{3+}/Fe} + \frac{0,059}{3} \lg[Fe^{3+}].$$

2) Процессы комплексообразования

Потенциал пары ${\rm Fe^{3+}}\,/\,{\rm Fe^{2+}}$ в отсутствие комплексообразования будет равен:

$$E_{Fe^{3+}/Fe^{2+}} = E^{0}_{Fe^{3+}/Fe^{2+}} + 0,0591g\frac{[Fe^{3+}]}{[Fe^{2+}]}.$$

При введении в раствор фторид-ионов концентрация ионов Fe^{3+} уменьшается за счет реакции:

$$\beta_6 = \frac{[FeF_6^{3-}]}{[Fe^{3+}][F^-]^6} = 1,26 \cdot 10^{16}$$

и становится равной:

$$[Fe^{3+}] = \frac{[FeF_6^{3-}]}{\beta_6[F^-]^6}.$$

Подставим эту величину в уравнение Нернста, тогда:

$$E_{Fe^{3+}/Fe^{2+}} = E^{0}_{Fe^{3+}/Fe^{2+}} + 0,0591g \frac{[FeF_{6}^{3-}]}{[Fe^{2+}]\beta_{6}[F^{-}]^{6}} =$$

$$= E^{0}_{Fe^{3+}/Fe^{2+}} - 0,0591g \beta_{6} + 0,0591g \frac{[FeF_{6}^{3-}]}{[Fe^{2+}][F^{-}]^{6}}$$

Объединяя постоянные величины, получаем:

$$E^{0}_{FeF_{6}^{3-}/Fe^{2+}} = E^{0}_{Fe^{3+}/Fe^{2+}} - 0.059 \lg \beta_{6} = 0.77 - 0.059 \cdot 16.1 = -0.183 B.$$

Последнее уравнение показывает, что чем больше прочность комплекса, тем сильнее изменяется стандартный потенциал.

3) Образование малорастворимых соединений

Ответим на вопрос, возможно ли взаимодействие между ионами Cu^{2+} и I^- . Сопоставление стандартных потенциалов пар Cu^{2+} / Cu^+ ($E^0_{Cu^{2+}/Cu}=0,159$ B) и I_2 / $\mathrm{2I}^-$ ($E^0_{I_2/2I^-}=0,536$ B) показывает, что ионы Cu^{2+} не могут окислить иодидионы в растворе. Однако следует учесть образование малорастворимого соединения CuI , что резко снижает концентрацию ионов Cu^+ в растворе. (р $\mathrm{\Pi P_{CuI}}=-1$ $\mathrm{Ig}\mathrm{\Pi P_{CuI}}=11,96$).

Запишем уравнение Нернста для пары $Cu^{2^+} \, / \, Cu^+$

$$E_{Cu^{2+}/Cu^{+}} = E^{0}_{Cu^{2+}/Cu^{+}} + 0.059 \lg \frac{[Cu^{2+}]}{[Cu^{+}]}.$$

и подставим в него равновесную концентрацию ионов Cu^+ , рассчитанную из величины произведения растворимости CuI,

тогда

$$E_{Cu^{2+}/Cu^{+}} = E^{0}_{Cu^{2+}/Cu^{+}} + 0.059 \lg \frac{[Cu^{2+}][I^{-}]}{\Pi P_{CuI}} = E^{0}_{Cu^{2+}/Cu^{+}} - 0.059 \lg \Pi P_{CuI} + 0.059 \lg [Cu^{2+}][I^{-}]$$

Отсюда:

$$E_{Cu^{2+}/CuI} = E^{0}_{Cu^{2+}/Cu^{+}} - 0.059 \lg \Pi P_{CuI} =$$

= 0.159 + 0.059 \cdot 11.96 = 0.865 B.

Поскольку эта величина превышает $E^0_{I_2/2I^-}$ = 0,536 B, то ионы Cu^{2+} могут окислить иодид-ионы в растворе и уравнение реакции между ними следует представить следующим образом:

$$2Cu^{2+} + 4I^{-} = 2CuI \downarrow + I_2.$$

4.3. Окислительно-восстановительные свойства воды

Уравнение Нернста для водородного электрода

$$2H^{+}+2\bar{e}=H_{2}\left(\Gamma\right)$$

имеет вид:

$$E_{2H^+/H_2} = \frac{RT}{F} \ln \frac{\alpha_{H^+}}{p_{H_2}}.$$

В чистой воде $\alpha_{H^+}=1,00\cdot 10^{-7},$ тогда потенциал водородного электрода в воде при 25°C и $p_{H_2}=1$ равен

$$E_{2H^+/H_2} = 0.059 \cdot \lg 1.00 \cdot 10^{-7} = -0.413$$
 B.

Следовательно, восстановители, имеющие ${\rm E^0}<-0.413~{\rm B},$ могут разлагать воду с выделением водорода. Так проявляются окислительно-восстановительные свойства воды.

Вода обладает также восстановительными свойствами, т.е. может быть окислена до кислорода

$$2H_2O = 4H^+ + O_2 + 4\bar{e}$$
.

Стандартный потенциал этой пары равен 1,23 В. В чистой воде $[H^+] = 1,00 \cdot 10^{-7}$ моль/л, тогда

$$E_{O_2/H_2O}$$
 = 1,23 + 0,059 · (-7,0) = 0,82 *B*.

Следовательно, окислители, у которых ${\rm E^0} > 0.82~{\rm B}$, разлагают воду с выделением кислорода.

Следовательно, в водном растворе устойчивы редокс-системы, потенциалы которых находятся в интервале

4.4. Константы равновесия окислительно-восстановительных реакций

Уравнение окислительно-восстановительной реакции можно представить схемой:

$$v_1BOC_1 + v_2OK_2 = v_3OK_1 + v_4BOC_2$$
.

Константа равновесия этой реакции имеет вид:

$$K_p = \frac{\alpha_{o\kappa_1}^{v_3} \cdot \alpha_{eoc_2}^{v_4}}{\alpha_{o\kappa_2}^{v_1} \cdot \alpha_{eoc_1}^{v_2}}.$$

Окислительно-восстановительные потенциалы пар — участников реакции согласно уравнению Нернста запишутся как:

$$E_{o\kappa_2/soc_2} = E^0_{o\kappa_2/soc_2} + \frac{RT}{nF} \ln \frac{\alpha_{o\kappa_2}^{v_2}}{\alpha_{soc_2}^{v_4}};$$

$$E_{o\kappa_1/soc_1} = E^0_{o\kappa_1/soc_1} + \frac{RT}{nF} \ln \frac{\alpha_{o\kappa_1}^{\gamma_3}}{\alpha_{soc_1}^{\gamma_1}}.$$

Здесь п – общее число электронов, участвующих в реакции.

В состоянии равновесия $E_{o\kappa_2/6oc_2}$ = $E_{o\kappa_1/6oc_1}$,

тогда

$$E^{0}_{o\kappa_{2}/soc_{2}} + \frac{RT}{nF} \ln \frac{\alpha_{o\kappa_{2}}^{v_{2}}}{\alpha_{soc_{2}}^{v_{4}}} = E^{0}_{o\kappa_{1}/soc_{1}} + \frac{RT}{nF} \ln \frac{\alpha_{o\kappa_{1}}^{v_{3}}}{\alpha_{soc_{1}}^{v_{1}}}$$

Отсюда:

$$n(E^{0}_{o\kappa_{2}/6oc_{2}} - E^{0}_{o\kappa_{1}/6oc_{1}}) = \frac{RT}{F} 2,303 \lg \frac{\alpha_{o\kappa_{1}}^{v_{3}} \alpha_{eoc_{2}}^{v_{4}}}{\alpha_{o\kappa_{2}}^{v_{2}} \alpha_{eoc_{1}}^{v_{1}}}.$$

С учетом того, что под знаком логарифма находится выражение константы равновесия, можно записать:

$$\lg K = \frac{(E^{0}_{o\kappa_{2}/8oc_{2}} - E^{0}_{o\kappa_{1}/8oc_{1}}) \cdot nF}{2.303RT}$$

или для 25°C:

$$\lg K = \frac{(E^0_{o\kappa} - E^0_{goc}) \cdot n}{0.059},$$

где n – наименьшее общее кратное из числа отданных и принятых электронов.

4.5. Расчеты равновесий в редокс-системах

<u>Пример 1</u>. Вычислить ЭДС гальванического элемента, состоящего из следующих пар:

a)
$$Pt \left| \frac{Fe^{2+} (0.01 \mod / \pi)}{Fe^{3+} (10^{-6} \mod / \pi)} \right| \frac{Cr_2 O_7^{2-} (0.1 \mod / \pi)}{Cr^{3+} (10^{-6} \mod / \pi)} \quad pH = 0 \mid Pt,$$

6)
$$Hg \left| Hg_2Cl_{2ms.}, 0,27M HCl \right| 0,1M HCl | H_2(Pt).$$

<u>Решение</u>. 1a) В гальваническом элементе на электродах протекают следующие реакции:

$$Fe^{3+} + \bar{e} = Fe^{2+}$$
; $E^0 Fe^{3+} / Fe^{2+} = 0,77$ B;

$$Cr_2O_7^{2-} + 14H^+ + 6\bar{e} = 2Cr^{3+} + 7H_2O_3$$
; $E^0Cr_2O_7^{2-}/2Cr^{3+} = 1,33$ B.

Вычислим окислительно-восстановительные потенциалы этих электродов (полуэлементов):

$$E_{Fe^{3+}/Fe^{2+}} = E^{0}_{Fe^{3+}/Fe^{2+}} + 0.059 \lg \frac{[Fe^{3+}]}{[Fe^{2+}]} = 0.771 + 0.059 \lg \frac{[Fe^{3+}]}{[Fe^{2+}]} = 0.771 + 0.059 \lg \frac{[Fe^{3+}]}{[Fe^{3+}]} = 0.05$$

+
$$0.059 \lg \frac{10^{-6}}{10^{-2}} = 0.771 - 0.059 \cdot 4 = 0.535$$
 B.

$$E_{Cr_2O_7^{2-}/2Cr^{3+}} = E^0_{Cr_2O_7^{2-}/2Cr^{3+}} + \frac{0.059}{6} \lg \frac{[Cr_2O_7^{2-}][H^+]^{14}}{[Cr^{3+}]^2} =$$

= 1,330 +
$$\frac{0,059}{6}$$
 lg $\frac{0,1 \cdot 1^{14}}{(10^{-6})^2}$ = 1,330 + $\frac{0,059}{6}$ 11 =

$$= 1,330 + 0,108 = 1,438$$
 B.

ЭДС гальванического элемента составляет:

ЭДС =
$$E_{Cr_2O_7^{2-}/2Cr^{3+}}$$
 - $E_{Fe^{3+}/Fe^{2+}}$ = 1,438 - 0,535 = 0,903 В.

<u>Решение</u>. 1б) В гальванического элементе на электродах протекают следующие реакции:

$$2H^{+} + 2\bar{e} = H_{2}(\Gamma);$$
 $E^{0}_{2H^{+}/H_{2}} = 0.$ $E^{0}_{Hg_{2}^{2+}/2Hg} = 0.792B.$

Окислительно-восстановительные потенциалы этих электродов вычисляем по уравнению Нернста:

$$E_{2H^{+}/H_{2}} = E^{0}_{2H^{+}/H_{2}} + \frac{0,059}{2} \lg[H^{+}]^{2} =$$

$$= E^{0}_{2H^{+}/H_{2}} + 0,059 \lg[H^{+}] = 0,059 \cdot \lg 10^{-1} = -0,059B.$$

$$E_{Hg_{2}^{2+}/2Hg} = E^{0}_{Hg_{2}^{2+}/2Hg} + \frac{0,059}{2} \lg[Hg_{2}^{2+}].$$

С учетом произведения растворимости Hg_2Cl_2 вычисляем $[Hg_2^{2+}]$:

$$[Hg_2^{2+}] = \frac{\Pi P_{Hg_2Cl_2}}{[Cl^-]^2} = \frac{1,3 \cdot 10^{-18}}{0,27^2} = 1,78 \cdot 10^{-17} \,\text{моль}/\,\pi.$$

и подставляем это значение в уравнение Нернста для пары ${\rm Hg_2}^{2^+}\,/\,{\rm Hg}$:

$$E_{Hg_2^{2^+}/2Hg} = 0,792 + \frac{0,059}{2} \lg 1,78 \cdot 10^{-17} = 0,792 + \frac{0,059}{2} (-16,75) = 0,792 - 0,494 = 0,298B.$$

ЭДС гальванического элемента составляет:

ЭДС =
$$E_{Hg_2^{2+}/2Hg}$$
 - E_{2H^+/H_2} = 0,298 - (-0,059) = 0,357 B .

<u>Пример 2</u>. Вычислить потенциал водородного электрода в 0,1 М растворе Na₂CO₃. <u>Решение</u>. Равновесная концентрация ионов водорода, от которой зависит потенциал водородного электрода, будет определяться основной диссоциацией карбонат-иона по первой ступени:

$$CO_3^{2-} + HOH \leftrightarrow HCO_3^- + OH^-$$

0,1-x x

$$K_1^b = \frac{[HCO_3^-][OH^-]}{[CO_3^{2-}]} \cdot \frac{[H^+]}{[H^+]} = \frac{K_w}{K_{HCO_3^-}} = \frac{1,0 \cdot 10^{-14}}{4,8 \cdot 10^{-11}} = 2,08 \cdot 10^{-4}.$$

Отсюда:

$$x = [OH^{-}] = \sqrt{K_1^b \cdot C_{conu}} = \sqrt{2,08 \cdot 10^{-4} \cdot 0,1} = 4,56 \cdot 10^{-3}$$
 моль / л.

Из ионного произведения воды получаем:

$$[H^+] = \frac{K_w}{[OH^-]} = \frac{1,00 \cdot 10^{-14}}{4,56 \cdot 10^{-3}} = 2,19 \cdot 10^{-12} \,\text{моль} / \,\pi.$$

Подставляем найденную концентрацию ионов водорода в уравнение Нернста:

$$E_{2H^+/H_2} = E^0_{2H^+/H_2} + 0.059 \lg[H^+] = 0.059 \cdot \lg 2.19 \cdot 10^{-12} = 0.059(-11.66) = -0.688B.$$

<u>Пример 3</u>. Вычислить потенциал медного электрода в растворе, содержащем 0,01 моль/л CuSO₄ и 1 моль NH₃.

<u>Решение</u>. Равновесная концентрация ионов Cu^{2+} , от которой зависит потенциал медного электрода, определяется процессом комплексообразования с NH_3 . Уравнение реакции комплексообразования с учетом того, что в растворе доминирует $Cu(NH_3)_4^{2+}$, можно записать как:

$$Cu^{2+} + 4NH_3 \leftrightarrow Cu(NH_3)_4^{2+}$$

 $x = 1-4(0,01-x) = 0,01-x$

С учетом величины константы устойчивости

$$\beta_4 = \frac{[Cu(NH_3)_4^{2+}]}{[Cu^{2+}][NH_3]^4} = 1,07 \cdot 10^{12},$$

обозначаем равновесные концентрации частиц (приведены под уравнением реакции).

Подставляем численные значения в уравнение для β_4 :

$$\frac{(0.01-x)}{x(0.96+4x)^4} = 1.07 \cdot 10^{12}$$

$$\frac{0.01}{x \cdot 0.96^4} = 1.07 \cdot 10^{12}$$

$$x = [Cu^{2+}] = 1, 1 \cdot 10^{-14}$$
 моль/л.

Отсюда по уравнению Нернста:

$$E_{Cu^{2+}/Cu} = E^{0}_{Cu^{2+}/Cu} + \frac{0,059}{2} \lg[Cu^{2+}] = 0,346 + \frac{0,059}{2} \lg[1,1 \cdot 10^{-14}] = 0,346 + \frac{0,059}{2} (-13,96) = 0,346 - 0,412 = -0,066B.$$

<u>Пример 4</u>. Вычислить равновесные концентрации ионов MnO_4^- , Mn^{2+} , $S_2O_8^{2-}$ и SO_4^{2-} в растворе, полученном при смешении 20 мл 0,2 M раствора $MnSO_4$ и 20 мл 0,5 M раствора $(NH_4)_2S_2O_8$ при рН 0.

<u>Решение</u>. Запишем уравнение реакции взаимодействия Mn^{2+} с персульфат-ионами в кислой среде:

$$2Mn^{2+} + 5S_2O_8^{2-} + 8H_2O = 2MnO_4^{-} + 10SO_4^{2-} + 16H^{+}$$

$$2x + 5x + 2(0.05-x) + 10(0.05-x)$$

$$2 \mid Mn^{2+} + 4H_2O - 5\bar{e} \rightarrow MnO_4^{-} + 8H^{+}$$

$$5 \mid S_2O_8^{2-} + 2\bar{e} \rightarrow 2SO_4^{2-}.$$

Константу равновесия этой реакции можно представить следующим образом:

$$K_{p} = \frac{[MnO_{4}^{-}]^{2}[SO_{4}^{2-}]^{10}[H^{+}]^{16}}{[Mn^{2+}]^{2}[S_{2}O_{8}^{2-}]^{5}}$$

Найдем численное значение константы равновесия:

$$\lg K_p = \frac{(E^0 S_2 O_8^{2-} / 2S O_4^{2-} - E^0 M n O_4^{-} / M n^{2+}) \cdot m \cdot n}{0,059} = \frac{(2,0-1,51) \cdot 5 \cdot 2}{0,059} = 83,0 , m.e. K_p = 10^{83}.$$

Концентрации растворов $MnSO_4$ и $(NH_4)_2S_2O_8$ после смешения составят:

$$C^{0}_{MnSO_{4}} = \frac{20 \cdot 0.2}{40} = 0.1 \text{ моль}/\pi;$$

$$C^0_{(NH_4)_2S_2O_8} = \frac{20\cdot 0.5}{40} = 0.25$$
 моль/л.

Обозначим равновесные концентрации участников реакции (указаны под уравнением реакции) и подставим эти величины в выражение для K_p :

$$\frac{2^2 \cdot (0,05-x)^2 \cdot 10^{10} \cdot (0,05-x)^{10} \cdot 1^{16}}{2^2 \cdot x^2 \cdot 5^5 \cdot x^5} = 10^{83}.$$

Так как x – мало, то последнее уравнение можно упростить:

$$\frac{0.05^{12} \cdot 10^{10}}{5^5 \cdot x^7} = 10^{83}$$

$$x^7 = \frac{5^7 \cdot 10^{-14}}{10^{83}} = 7.813 \cdot 10^{-93}$$

$$\lg x = \frac{1}{7} \lg(7.813 \cdot 10^{-93}) = \frac{1}{7} (-92.107) = -13.158 = \overline{14}.842$$

$$x = 6.95 \cdot 10^{-14}$$

Отсюда:

$$[Mn^{2+}] = 2.6,95.10^{-14} = 1,39.10^{-13}$$
 моль/л;

$$[S_2O_8{}^{2-}] = 5 \cdot 6,95 \cdot 10^{-14} = 3,48 \cdot 10^{-13} \text{ моль/л};$$

$$[MnO_4^-] = 0,1$$
 моль/л;

$$[SO_4^{2-}] = 0,5$$
 моль/л.

Содержание

Гл. 1. Кислотно-основные равновесия	3
1.1. Автопротолиз воды	3
1.2. Сильные кислоты и основания	4
1.2.1. Расчеты равновесий в растворах сильных кислот и оснований.	4
1.2. Слабые кислоты и основания	5
1.3.1. Расчеты равновесий в растворах слабых кислот и оснований	7
1.4. Многоосновные кислоты и многопротонные основания	11
1.4.1 Расчеты равновесий в растворах многоосновных кислот	15
1.5. Буферные растворы	17
1.5.1. Расчеты равновесий в буферных растворах	20
1.6. Амфолиты.	23
Гл. 2. Реакции осаждения и растворения малорастворимых соединений	25
2.1. Равновесие в системе раствор-осадок.	25
2.2. Условия образования и растворения осадка	27
2.3. Растворимость осадков в воде	27
2.4. Влияние одноименных ионов на растворимость осадка	28
2.5. Последовательное осаждение двух осадков.	29
2.6. Расчеты равновесий при осаждении малорастворимых	
электролитов.	30
2.6.1. Расчеты равновесий при осаждении хлоридов	30
2.6.2. Расчеты равновесий при осаждении сульфатов	32
2.6.3. Расчеты равновесий при осаждении гидроксидов	35
2.6.4. Расчеты равновесий при осаждении хроматов	38
2.7. Равновесие между двумя осадками и раствором. Карбонизация	40
2.8. Растворение малорастворимых электролитов	42
2.9. Растворение осадков в кислотах	42
2.9.1. Растворение осадков гидророксидов в кислотах	43
2.9.2. Растворение карбонатов в кислотах	45
2.9.3. Растворение хроматов в кислотах	46

Гл. 3. Реакции комплексообразования в аналитической химии	51
3.1. Равновесия в растворах координационных соединений	. 52
3.1.1. Равновесия в растворах аммиачных комплексов. Расчет	
мольных долей частиц	54
3.2. Условные константы устойчивости	56
3.3. Растворимость осадка за счет комплексообразования. Условное	
произведение растворимости	59
3.4. Реакции комплексообразования при осаждении и растворении	
хлоридов	60
3.5. Образование гидроксокомплексов при осаждении и растворении	
гидроксидов	64
3.6. Образование аммиачных комплексов при осаждении и	
растворении гидроксидов	64
Гл. 4. Реакции окисления-восстановления	70
4.1. Окислительно-восстановительные потенциалы	70
4.2. Факторы, влияющие на величину окислительно-восстановительно)ГО
потенциала	73
4.3. Окислительно-восстановительные свойства воды	75
4.4. Константы равновесия окислительно-восстановительных	
реакций	76
4.5. Расчеты равновесий в редокс-системах	78
Содержание	83